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Abstract

 

We report a new study testing our proposal that word learning may be best explained as an approximate form of Bayesian
inference (Xu & Tenenbaum, in press). Children are capable of learning word meanings across a wide range of communicative
contexts. In different contexts, learners may encounter different sampling processes generating the examples of word–object
pairings they observe. An ideal Bayesian word learner could take into account these differences in the sampling process and
adjust his/her inferences about word meaning accordingly. We tested how children and adults learned words for novel object
kinds in two sampling contexts, in which the objects to be labeled were sampled either by a knowledgeable teacher or by the
learners themselves. Both adults and children generalized more conservatively in the former context; that is, they restricted the
label to just those objects most similar to the labeled examples when the exemplars were chosen by a knowledgeable teacher,
but not when chosen by the learners themselves. We discuss how this result follows naturally from a Bayesian analysis, but not
from other statistical approaches such as associative word-learning models.

 

Introduction

 

Models for how children learn the meanings of words
traditionally fall into two classes. One class of models
treats the process as inferential in nature, akin to reason-
ing. Although the child presumably is not consciously
working out each step of the reasoning process and the
computations may be done implicitly, the child learner is
assumed to draw on a set of hypotheses about candidate
word meanings and to evaluate these hypotheses based
on observed input using one or more principles of rational
inference (e.g. Bloom, 2000; Carey, 1978; Markman, 1989;
Siskind, 1996). In contrast, associative models assume
that the learner represents a matrix of graded word–object
mappings, and the strengths of these mappings are incre-
mentally increased or decreased over time given repeated
exposures (e.g. Colunga & Smith, 2005; Gasser & Smith,
1998; Regier, 2003, 2005).

We will argue for an alternative view that combines
aspects of  both approaches: the basic architecture is
a form of rational hypothesis-driven inference, but the
inferential logic is Bayesian and hence shows something
of the graded statistical character of associative models
(Tenenbaum & Xu, 2000; Xu & Tenenbaum 2005, in press).

Confronted with a novel word, the learner constructs a
hypothesis space of candidate word meanings (i.e. lexi-
calizable concepts) and a prior probability distribution
over that hypothesis space. Given one or more examples
of objects labeled by the new word, the learner updates the
prior to a posterior distribution of beliefs based on the
likelihood of observing these examples under each candi-
date hypothesis. The prior represents any knowledge
(due to previous learning or innate endowment) about
which meanings are more or less likely to be the target
of the new word, independent of the observed examples.
The likelihood is based on the sampling process pre-
sumed to have generated the observed object–label pairs.

Recent studies of  word learning with adults and
children provide some initial evidence for this account.
These studies test generalization: participants are shown
one or more examples of a novel word (e.g. ‘blicket’) and
are asked to judge which objects from a test set the word
also applies to. Xu and Tenenbaum (in press) demon-
strated that in learning object kind labels at different
levels of the hierarchy (i.e. subordinate, basic level, and
superordinate), both the generalization patterns of adults
and 4-year-old children were sensitive to the number and
the span of the examples, in the ways predicted by a
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simple Bayesian analysis. The most critical finding for
distinguishing our Bayesian model from alternative
approaches comes from what we call the ‘one versus three’
contrast, a contrast between patterns of generalization
in two different kinds of trials. On a one-example trial,
the experimenter pointed to an object, e.g. a toy basset
hound, and taught the learner a new word with an
utterance such as ‘See this? This is a fep!’ She continued
talking and interacting with the example object, labeling
it a total of three times. On a three-example trial, the
experimenter pointed to each of three very similar-looking
examples, e.g. three basset hounds varying subtly in
color, and referred to each one as a ‘fep’. In both cases,
the learner was then asked to generalize the word to new
objects, with test trials including subordinate matches
(e.g. other basset hounds), basic-level matches (e.g. other
dogs), and superordinate matches (e.g. other animals),
as well as non-matching objects (e.g. vegetables and
vehicles). In the one-example case, adults and children
generalized to subordinate and basic-level matches, but
not beyond. In the three-example case, although the
input was still consistent with a basic-level interpreta-
tion, adults and children restricted their generalization
to only subordinate matches.

Standard versions of associative learning models do
not predict this contrast, because both types of trials
presented the learner with three, practically identical
word–object pairings. If anything, there was more variance
among the objects in the three-example condition, so it
is hard to see why a simple associative learner would
generalize more conservatively there. Traditional rational
inference accounts, based on eliminating hypotheses
inconsistent with the observed examples, also do not
predict this difference because exactly the same set of
hypotheses is logically consistent with the examples in
both cases. Adding a principle for selecting among
multiple consistent hypotheses, such as a preference for
mapping words to basic-level categories, would still pre-
dict the same generalizations in each case (i.e. basic-level
generalization).

Our Bayesian model accounts for the one-versus-three
contrast with the assumption that the learner makes a
rational statistical inference, treating the observed examples
as a random sample from the extension of  the word
to be learned. In both conditions, the most plausible
consistent hypotheses for the word’s extension comprise
a nested set of categories, e.g. all and only basset
hounds, all and only dogs, all and only animals. Given
just a single example, the probabilities assigned to these
hypotheses are not greatly different. The ideal Bayesian
learner thus averages the predictions of all these hypotheses,
yielding a gradient of  generalization that falls off
around the basic level. However, given three highly similar

examples, each assumed to be randomly drawn from the
word’s extension, this sample would be a highly suspicious
coincidence unless the word had a very narrow extension.
The posterior probability thus becomes concentrated on
the smallest hypothesis containing the observed examples,
leading the learner to generalize the word only to other
subordinate matches.

More generally, the Bayesian model’s sampling assump-
tion is critical for explaining children’s ability to infer a
word’s meaning from only a few passively observed
positive examples. In contrast, standard learning models
in both the associative and rational inference traditions
take as their data just a set of word–object pairs without
regard for how these examples are generated. An impor-
tant feature of real-world word learning is that learning
takes place in a communicative context, and the learner’s
data may be generated by very different processes in
different contexts; the assumption of examples drawn at
random from a word’s extension will not always be true.
A stronger test of the Bayesian approach over sampling-
blind alternatives would be to place learners in different
communicative contexts, varying the sampling process
but keeping the word–object pairings constant, and to
test whether learners generalize according to what will
now be different ideal Bayesian predictions in these dif-
ferent conditions. The current study was designed to test
just such a manipulation.

We compared two experimental conditions. The
‘teacher-driven’ condition was essentially a replication of
the three-example subordinate trials in our previous
studies (Xu & Tenenbaum, in press), as described above.
The only significant difference was the use of  novel
artificial objects, rather than familiar objects for which
participants might have already known English category
labels. In the ‘learner-driven’ condition, again three
examples in the same subordinate class were presented,
but only the first example of a ‘fep’ was provided by the
teacher. Then learners were asked to pick out two more
feps and were promised a token prize (a sticker) if  they
correctly picked out these two examples. Ordinarily, if
learners can actively choose examples to be labeled, we
expect they would choose objects about which they are
most uncertain, in order to gain the most information
(Nelson, Tenenbaum & Movellan, 2001; Steyvers,
Tenenbaum, Wagenmakers & Blum, 2003). However, in this
context, we expected that learners would conservatively
choose two more objects from the same subordinate
category, in order to maximize their chance of  being
correct and getting the prize. All but one participant in
fact made these choices and received the feedback that
they had successfully picked out two more feps. Thus parti-
cipants in the ‘learner-driven’ condition saw essentially
the same three word–object pairings that participants in
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the ‘teacher-driven’ condition saw, but now in a context
where these objects were chosen independently of the
word’s meaning (rather than as a random sample from
the word’s extension) – because the learner (unlike the
teacher) does not know the word’s meaning. Tenenbaum
and Griffiths (2001) referred to this sampling mode as
‘weak sampling’, in contrast to ‘strong sampling’ where
the examples are drawn from the concept’s extension (as
in the teacher-driven condition). Under weak sampling,
the fact that all three examples fall under the same
subordinate category is not a suspicious coincidence,
and a Bayesian learner who uses this knowledge should
generalize in this case essentially as they would from a
single randomly drawn example – to all basic-level
matches rather than just the subordinate matches.

 

A Bayesian model

 

Before describing our experimental design and results,
we give a formal Bayesian analysis of the word-learning
scenario studied here, highlighting the role of the sampling
process. Our treatment in this section aims for generality,
which requires a certain degree of  abstraction. The
Appendix illustrates these computations more concretely
for the specific conditions of the experimental task.
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space 
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 and prior 
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), because our focus is on how the

learner thinks about the process generating the observed
examples, which is captured in the likelihood. We will
assume that the hypothesis space comprises a tree-structured
taxonomy of kind categories, similar to the semantic
hierarchies proposed by Collins and Qullian (1969) or
Rosch, Mervis, Gray, Johnson and Boyes-Braem (1976).
One hypothesis corresponds to each category in the
taxonomy. The categories can be arranged into levels,
such as the subordinate, basic, and superordinate levels
of Rosch 

 

et al

 

. (1976). For all categories at the same
taxonomic level, the prior assigns equal probability. These
choices reflect the minimal structure necessary to
capture the experiments described below, as well as one
of the essential inductive challenges faced by children
learning words from real-world experience. Because any
object can be construed as a member of multiple categories,
at the point where a learner has seen only one or a small
number of examples of a word’s possible referents – the
situation of ‘fast mapping’ – there is likely to be more
than one 
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 plausible hypothesis consistent with the
observed data. However, there may be an expectation that
words are more or less likely to map onto a particular
level of a category hierarchy, such as an expectation that
words are most commonly used to refer to objects at a
basic level of categorization (e.g. Markman, 1989). For
the specific experiments described below, we represent
the objects in terms of a single superordinate category,
with two basic-level categories each dividing further into
three subordinate categories (Figure 1a). A parameter 
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represents the ratio of the prior probability assigned to
one of the basic-level categories versus one of the subor-
dinate categories. Given the constraint that the prior
must sum to one over all hypotheses, fixing 
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 uniquely
determines the full prior distribution.

The likelihood is where the distinction between learn-
ing from strong sampling and weak sampling appears,
and thus where we see effects of inferences about the
process generating the observed examples. The full likeli-
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is shown a positive example, the label is generated first
(depending on what the speaker wants to communicate
in a particular context), and then an object is chosen
from the set of stimuli with that label. This causal order
is reversed in weak sampling: the learner first picks an
object to be labeled out of the total set of stimuli, and
then the teacher responds with either a positive or
negative label depending on whether the object chosen
falls inside the word’s positive extension.

This difference in causal order affects the inferences
that the learner is licensed to draw under strong or weak
sampling. Under strong sampling, the fact that a particular
example is positive is not informative about the meaning
of the word – only that the example is being generated
by a knowledgeable speaker who either intends to pro-

vide positive examples in an ostensive teaching context,
or is merely using words correctly (to refer to their
positive instances) in the course of natural conversation
with other competent speakers. However, the particular
object chosen for labeling is informative about the word’s
meaning, because it is presumed to be a random sample
from the word’s positive extension. These dependencies
are reversed under weak sampling. The choice of which
object to label does not depend directly on the word’s
meaning, because the learner is choosing the examples
and does not know the word’s meaning. However, the
label observed does depend on the meaning, because the
labels are provided by a competent user who knows what
the word means and will presumably label the learner’s
chosen object positively or negatively according to whether
or not it falls in the word’s extension. The differences in
these patterns of causal dependencies, and the probabilistic
dependencies they imply, lead a Bayesian learner to
make qualitatively different kinds of inferences in these
learning situations.

More formally, in the strong sampling condition, we
can write

 

p

 

(

 

x

 

i

 

 

 

|

 

 

 

m

 

) 

 

=

 

 

 

p

 

(

 

o

 

i

 

, 

 

l

 

i

 

 

 

|

 

 

 

m

 

)

 

=

 

 

 

p

 

(

 

o

 

i

 

 

 

|

 

 

 

l

 

i

 

, 

 

m

 

)

 

p

 

(

 

l

 

i

 

 

 

|

 

 

 

m

 

)

 

∝

 

 

 

p

 

(

 

o

 

i

 

 

 

|

 

 

 

l

 

i

 

, 

 

m

 

),

where we have factorized 

 

p

 

(

 

o

 

i

 

, 

 

l

 

i

 

 

 

|

 

 

 

m

 

) according to the
causal order of the sampling process, and then dropped the
dependence on 

 

p

 

(

 

l

 

i

 

 

 

|

 

 

 

m

 

) which we assume is independent
of the word’s meaning 

 

m
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arbitrary constant multiple that cancels when we com-
pute posterior probabilities in Equation (2). Assuming
for simplicity that only positive examples are observed,
and that the object 
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 is sampled randomly from all
objects in the word’s extension, the remaining likelihood
term 

 

p

 

(

 

o

 

i

 

 

 

|

 

 li, m) is just inversely proportional to | m |, the
number of stimuli available that the word applies to
under the hypothesis that its meaning is m, unless oi is
not contained in the subset of objects that m picks out,
in which case the likelihood is 0. If  the learner observes
n examples generated by strong sampling, the total
likelihood (for any hypothesis m consistent with those
examples) is

(4)

This likelihood function reflects what we have called the
size principle (Tenenbaum, 1999; Tenenbaum & Griffiths,
2001): more specific meanings, with smaller extensions,
are more likely than more general meanings, with larger
extensions, when both are consistent with a given set of
examples; and the preference for more specific meanings

Figure 1 (a) A schematic illustration of the hypothesis space 
used to model generalization in the experiment, for the stimuli 
shown in (b). (b) One set of stimuli used in the experiment, as 
they were shown to participants.
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increases exponentially with the number of examples
observed. We have previously shown (Xu & Tenenbaum,
in press) that this principle is instrumental in explaining
the dynamics of  word learning for both adults and
children, and Tenenbaum (1999, 2000) has shown its
applicability to concept learning more broadly. However,
the size principle does not hold under all sampling
conditions.

Under weak sampling, the likelihood factorizes differ-
ently to reflect the different causal order of sampling:

p(xi | m) = p(oi, li | m)
= p(li | oi, m)p(oi | m) (5)
∝ p(li | oi, m).

The factorization in the second line reflects the learner
first choosing which object is to be labeled, followed by
a teacher or knowledgeable speaker providing a label for
that object, positive or negative, according to whether it
falls under the extension of w. We then drop the dependence
on p(oi | m), since the learner does not know the word’s
meaning, and thus the learner’s choice of which object
to label does not depend directly on m. (The learner’s
choice may depend indirectly on m via the examples pre-
viously seen, but conditioned on those observations, oi

and m are independent.) The remaining likelihood term
p(li | oi, m) is simply 1 or 0 depending on whether the
label li correctly assesses whether object oi falls under the
candidate extension m. That is, p(li | oi, m) = 1 if  li = 1
and object oi falls under the candidate extension m, or if
li = 0 and object oi falls outside the candidate extension
m, and 0 otherwise.

The key difference between the strong-sampling and
weak-sampling likelihoods is thus that the size principle
only holds for the strong-sampling case. The clearest
behavioral difference will emerge when the learner observes
multiple examples of a new word in which the objects all
fall within a single subordinate. The data are logically
ambiguous between a subordinate interpretation of the
word, and a basic-level interpretation. Under strong
sampling, the size principle will heavily favor the sub-
ordinate interpretation. Intuitively, it would be a suspi-
cious coincidence to observe a random sample of objects
in a basic-level category that all happen to cluster within
a single subordinate. However, under weak sampling, if
for some reason learners choose or are required to focus
their sampling within a single subordinate, then the
likelihoods would be uninformative with respect to the
basic versus subordinate interpretations of the word.
Our experiments explore this contrast, by setting up two
corresponding experimental conditions. In the ‘teacher-
driven’ condition, where the learner observes three random
examples provided by the teacher, the strong-sampling
likelihood should apply for all three examples. Because

the examples all fall within a single subordinate, parti-
cipants are expected to interpret the word as a sub-
ordinate label. In the ‘learner-driven’ condition, a first
example is provided by the teacher under strong sam-
pling, but subsequent examples are chosen by the learner
under weak sampling, and the pragmatics of the task (a
sticker offered as reward) encourage the learner to choose
essentially the same objects that are given under a strong-
sampling process in the ‘teacher-driven’ condition.
Although the object-label pairs observed are thus essen-
tially the same in both conditions, our Bayesian analysis
predicts that participants in the ‘learner-driven’ condi-
tion should favor a basic-level interpretation, because
the weak-sampling likelihoods do not provide distinctive
evidence in favor of the subordinate hypothesis that
would overwhelm an initial tendency towards basic-level
generalization.

The experiment presents results from adults and
children, along with a concrete instantiation of the above
analyses in a computational model of  the same task.

Experiment

Methods

Participants

Twenty-four children and 14 adults participated in the
study. The children were recruited from our subject
database (mean age 4;0 [years;months], ranging from 3;8
to 4;10; half  boys/girls). Two additional children were
excluded due to refusing to answer any questions or
choosing two additional examples from other subordinate
categories in the learner-driven condition (see below).
The children were randomly assigned to one of two con-
ditions (N = 12 for each condition), the teacher-driven
condition (mean age 4;0) and the learner-driven con-
dition (mean age 3;11). The adult participants (mean age
35, ranging from 25 to 40; five men and nine women)
were parents living in the greater Vancouver area who
brought their children into the lab for other experiments.
They were randomly assigned to one of two conditions
(N = 7 for each condition).

Design and procedure

Two color pictures of sets of novel objects were used in
the study. One set of novel objects is shown in Figure 1b.
Each picture depicted two basic-level categories of objects,
spatially segregated, and within each of those categories,
three subordinate categories of objects differing subtly in
color, texture, and orientation. There were five objects in
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each subordinate category, and 15 objects in each basic-
level category. Four nonsense words were used (‘blicket’,
‘tupa’, ‘wug’, and ‘fep’). Which word was used to refer
to which picture and which picture was shown first were
counterbalanced across participants.

Teacher-driven condition

With child participants, the experimenter began by ask-
ing the child to play a game with her. She pointed to an
object in the picture and said to the child, ‘See this? It’s
a blicket.’ She then pointed to two other objects from
the same subordinate category, one at a time, and said
to the child, ‘See this one? It’s a blicket.’ She then asked
the child to choose a sticker for paying attention and
doing a good job in the game. The experimenter then
proceeded to the test phase, in which the child was asked
to decide which other objects were also blickets. The
experimenter pointed to a total of five other objects, and
for each one she asked the child, ‘Is this a blicket?’ The
five test objects were, in order of questioning, a sub-
ordinate match, a non-match from the other basic-level
category, a basic-level match from a different subordinate,
another subordinate match, and another basic-level match.
Participants received no feedback on their answers to
test questions. The experimenter then presented the child
with the second set of objects and went through the
same procedure, using a different novel word. At the end
of the study, each child was allowed to choose another
sticker for doing a good job.

The procedure for adults was identical to that for chil-
dren. The adults were told that the study was initially
designed for preschoolers, and that stickers were given
out to keep the child on task.

Learner-driven condition

The procedure was identical to that of the teacher-driven
condition with the following critical difference. After
presenting the first example with the phrase, ‘See this?
It’s a blicket.’ The experimenter then asked the child,
‘Can you point to two other blickets? If  you get both of
them right, you get a sticker!’ Once the child picked two
more objects, the experimenter confirmed that the child
had correctly found two blickets (regardless of the child’s
selections) and the child was allowed to choose a sticker
as a reward. The experimenter then proceeded to the test
phase, pointing to five test objects and asking for each
one, ‘Is this a blicket?’ just as in the teacher-driven con-
dition. In both conditions, these five test questions were
asked only after participants had seen three labeled
examples; the only difference between conditions was the
process by which the second and third labeled examples

were sampled. The procedure for adults was again identical
to that for children. With the exception of  one child
(whose data were excluded from the analyses), all par-
ticipants pointed to two other objects from the same
subordinate category when asked to point to two other
blickets.

Results

Figure 2 summarizes responses to the test questions in
both conditions, in terms of the frequencies with which
participants generalized to different levels of the cate-
gory hierarchy. Over the five test trials, no participant
generalized a new word to any object from the other
basic-level category, and every participant responded in
a way that was consistent with a preferred level of gen-
eralization for a given word. That is, for each novel
word, each participant either generalized to just the two
subordinate-level matches, or to those objects and the
two basic-level matches. We calculated the percentages
of ‘yes’ responses for both the subordinate and the
basic-level matches. In the teacher-driven condition,
children generalized the novel word at the subordinate

Figure 2 Percentages of generalization responses at the 
subordinate and basic levels, for adults and children in both 
teacher-driven (a) and learner-driven (b) conditions.
Corresponding posterior probabilities for subordinate and 
basic-level hypotheses are shown for the Bayesian model.
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level 71% of the time, and at the basic level 29% of the
time. In the learner-driven condition, this preference was
exactly reversed: children generalized the novel word at
the subordinate level only 29% of the time and at the
basic level 71% of the time (shown in Figure 2). To assess
whether the difference between these two conditions was
statistically significant, each child was assigned a score
of 0, 1, or 2 depending on whether they generalized at the
basic level for 0, 1, or 2 of the two novel words learned.
A Mann-Whitney test between the scores for children in
the teacher-driven and learner-driven conditions showed
a statistically reliable difference, z = −1.95, p < .05.

Adult participants gave similar results. In the teacher-
driven condition, adults generalized the novel word at
the subordinate level 92.8% of the time and at the basic-
level 7.2% of the time. In the learner-driven condition,
adults generalized the novel word at the subordinate
level 35.7% of the time and at the basic-level category
64.3% of the time. (Figure 2 compares these percentages
graphically to children’s patterns of generalization.) Each
adult’s overall pattern of generalization was scored on
the same 0–2 scale, and a Mann-Whitney test between
the scores for adults in the teacher-driven and learner-
driven conditions was again statistically significant, z =
−1.98, p < .05.

Model results

Figure 2 also compares the generalization patterns of
both children and adults in the teacher-driven and learner-
driven conditions with the predictions of our Bayesian
model in those same two conditions. The size of each
hypothesis is set equal to the number of objects shown
in the corresponding category. The basic-level bias in the
prior, β, is set to 5. Qualitatively, the model predictions
do not depend on the precise value of β, as long as it is
somewhat but not vastly greater than one. The specific
value chosen provides the best fit found in a coarse
search over a range of parameter values. The model results
shown in Figure 2 reflect the posterior probabilities of
the two hypotheses that are consistent with the observed
examples in each case – a basic-level extension and a
subordinate-level extension.

To simulate each condition of the study, the model is
given the same set of three examples observed by parti-
cipants in that condition, and the likelihood of each
hypothesis is updated based on those three examples
assuming the appropriate sampling processes. In the
teacher-driven condition (where all three examples were
generated under strong sampling), the model assigns
posterior probabilities of 84.4% to the subordinate hypo-
thesis and 15.6% to the basic-level hypothesis. In the
learner-driven condition (with one example generated

under strong sampling and two under weak sampling),
the model assigns posterior probabilities of 37.5% to the
subordinate hypothesis and 62.5% to the basic-level
hypothesis. The Appendix shows concretely how these
predictions are derived.

Discussion

In deciding how to generalize a novel word beyond the
examples given, children and adults were shown to be
sensitive to the sampling process responsible for generat-
ing the examples they observed. Their generalizations
are in accord with the predictions of a Bayesian analysis,
assuming appropriately different likelihood functions –
strong sampling and weak sampling – for examples gen-
erated by a knowledgeable speaker or by the learner,
respectively. Only when learners were justified in assum-
ing that the three very similar examples they observed
represented a random sample from the extension of the
new word did they restrict their generalization to a higher
specific subordinate meaning. When essentially the same
three examples were given but with only one as a genuinely
random sample of the word’s referents, learners recog-
nized this and generalized more broadly, to the basic
level, just as in the one-example conditions of our previ-
ous studies (Tenenbaum & Xu, 2000; Xu & Tenenbaum,
2005, in press).

Our Bayesian analysis makes a number of simplifying
assumptions, which are not essential to the framework
and which could be weakened and further explored in
future work. We have neglected interactions between
multiple words in the learner’s developing lexicon,
assuming that we can model learning of a single new word
on its own. We have considered only the extensional
aspects of a word’s meaning – the set of objects that it
applies to, as opposed to the conceptual content that
allows the learner to establish this reference class – and
we have assumed that any word either does or does not
apply to an object in a binary fashion. We also have not
considered the possibility that a word could have more
than one meaning. Perhaps most importantly, we have
assumed that children (and adults) are able to infer
which sampling model would be appropriate to use given
the pragmatics of the learning situation, but we have not
modeled how they make that inference. This is surely a
deep and hard problem, arguably drawing on an under-
standing of discourse, theory-of-mind, and more general
social reasoning abilities that might support word learn-
ing (e.g. Bloom, 2000; Tomasello, 2001). Our goal here
is to present and test a formal approach to modeling
inductive inferences about word meaning, which can
incorporate multiple relevant capacities and sources of
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input within a principled and unifying framework for
statistical inference. This stands in contrast to typical
associative models, which do not naturally incorporate
capacities such as the pragmatic and intentional reason-
ing that appear to be necessary here, or traditional
rational inference models, which have not attempted to
explain the graded, statistical character of  people’s
generalizations about word meaning in the face of
ambiguous evidence.

Standard associative and rational inference models do
not predict our results, but could they be reasonably
modified to do so? Associative models might be modified
to have greater learning rates for trials on which a
knowledgeable speaker selects the objects to be labeled,
relative to trials on which learners themselves select the
examples. However, besides being rather arbitrary and
post hoc, this modification seems inconsistent with other
general findings about differences between active and
passive learning; active data selection typically leads to
more effective learning than passive observation (e.g.
Lagnado & Sloman, 2004; Sobel & Kushnir, in press;
Steyvers et al., 2003). It is critical in our learner-driven
condition that learners were encouraged by the promise
of a reward to select examples conservatively. If  they had
been encouraged to explore more freely and select the
most informative examples, we expect that they would
have chosen quite different examples, and thereby con-
verged quickly and confidently on the appropriate level
of generalization. Our Bayesian model would be able to
explain such a different learning trajectory without
fundamental modification, based only on the different
informational content of the examples encountered, while
a variable learning-rate associative model might need
substantial fine adjustments to account for all of these
different kinds of learning curves.

It is easier to accommodate our findings from the
standpoint of rational hypothesis-driven inference. A
growing body of research suggests that word learning
depends on the child’s sensitivity to pragmatic and inten-
tional cues (e.g. Baldwin, 1991, 1993; Bloom, 2000;
Diesendruck & Markson, 2001; Tomasello, 2001; Tomasello
& Barton, 1994; Tomasello, Strosberg & Akhtar, 1996;
Xu, Cote & Baker, 2005), and our results could be seen
as further evidence for the importance of these factors.
However, previously there have not been systematic
attempts to give a formal model of word learning as
hypothesis-driven inference that integrates prior knowledge
about conceptual structures underlying word meanings,
principles of word–concept mapping, statistical informa-
tion carried by patterns of observed object–word pairings,
and the effects of pragmatic and intentional reasoning.
This is essentially the goal of our Bayesian approach.
Although we are far from giving a complete account of

word learning, even the simple Bayesian model presented
here combines aspects of all these major sources of
input. Future work should further explore the potential
for Bayesian models in these directions: to integrate the
diverse sources of constraint that make it possible for
children to learn so many words so quickly, and to illu-
minate the connections between word learning and other
aspects of cognition where Bayesian models have recently
gained traction – such as the acquisition of syntactic
knowledge, intuitive domain theories, and causal know-
ledge (Perfors, Tenenbaum & Regier, 2006; Regier &
Gahl, 2004; Tenenbaum & Griffiths, 2001; Tenenbaum,
Griffiths & Niyogi, in press) – which place words and
word learning at the center of human mental life.

Appendix

Here we show concretely how the Bayesian model is
applied to our experimental task, in both the teacher-
driven and learner-driven conditions. The tree-structured
hypothesis space is illustrated in Figure 1a. Each hypo-
thesis m for the novel word’s meaning refers to one node of
the tree. Let m1 and m2 represent hypotheses that the word
maps onto one or the other of the two basic-level catego-
ries in the tree. Let m11, m12, and m13 represent the three
subordinate hypotheses under m1, and m21, m22, and m23

represent the three subordinate hypotheses under m2. For
simplicity, we do not include a hypothesis for the single
superordinate category that includes all objects. We rea-
soned that participants would assign this hypothesis a
very low prior probability on pragmatic grounds; includ-
ing it, with the same prior probability as the subordinate
hypotheses, does not qualitatively change the results.

Prior probabilities are determined by two constraints:
basic-level hypotheses are preferred over subordinate
hypotheses by a factor of β, and the sum of the prior prob-
abilities must equal one. Hence, p(m1) = p(m2) = β/(2β + 6),
and p(m11) = p(m12) = p(m13) = p(m21) = p(m22) = p(m23)
= 1/(2β + 6). The choice of  β = 5 yields reasonable fits
to people’s judgments, where p(m1) = p(m2) = 0.3125, and
p(m11) = p(m12) = p(m13) = p(m21) = p(m22) = p(m23) =
0.0625.

In both conditions of the experiment, learners observe
three labeled examples X = {x1, x2, x3} prior to being
asked to generalize in the test phase. The examples always
fall under a single subordinate category; for concreteness,
assume this category corresponds to m11. Thus the likeli-
hoods will be 0 for all hypotheses except two: m11, and m1

which represents a superset of m11; all other hypotheses
are inconsistent with the observed examples. The relative
likelihoods of m11 and m1, and hence their posterior prob-
abilities, will depend on the sampling conditions.
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Teacher-driven condition

Here all three examples are assumed to be generated
independently by strong sampling, so the likelihood of each
hypothesis is inversely proportional to its size raised to
the third power:

For simplicity we assume that the size of each hypothesis
is equal to the number of objects shown in the corre-
sponding category, so | m11 | = 5 and | m1 | = 15. Then we have

Posterior probabilities for the subordinate and basic-level
hypotheses can now be computed as follows:

Learner-driven condition

Here the first example is assumed to be generated by
strong sampling, but the second and third examples are
assumed to be generated by choosing the objects to be
labeled independently of the word’s true meaning (since
the learner has chosen the examples and the learner does
not know what the word means). As explained in the
main text, the likelihood function associated with these
latter examples is effectively just 1 for any hypothesis
consistent with the labeled examples, and 0 for all in-
consistent hypotheses. We thus have

or for each of the two consistent hypotheses:

Posterior probabilities for the subordinate and basic-level
hypotheses can now be computed as follows:
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