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Abstract 
 

Two experiments were designed to investigate the developmental trajectory of 

children’s probability approximation abilities. In Experiment 1, results revealed 6- and 7-

year-old children’s (N=48) probability judgments improve with age, and become more 

accurate as the distance between two ratios increases. Experiment 2 replicated these findings 

with 7- to 12-year-old children (N=130) while also accounting for the effect of the size and 

the perceived numerosity of target objects. Older children’s performance suggested the 

correct use of proportions for estimating probability; but in some cases, children relied on 

heuristic shortcuts.  These results suggest that children’s non-symbolic probability judgments 

show a clear distance effect, and that the acuity of probability estimations increases with age.  

 

Keywords: probabilistic reasoning, proportional reasoning, numerical cognition  
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The Development of Non-Symbolic Probability Judgments in Children 
 

Children experience a great deal of probabilistic data in everyday life, and both 

developmental psychologists and educators have found probabilistic reasoning to be a fertile 

domain for understanding the development of numerical cognition. Throughout development, 

children encounter a wealth of numerical and non-numerical data and must integrate these 

data to make rapid judgments, often based on limited information. Understanding how 

children leverage their intuitive understanding of number and probability to make decisions 

in a complex world can provide insights that are relevant to a broad range of fields from 

perception and decision making to formal mathematics education.  

Probabilistic reasoning refers to a broad range of abilities related to uncertainty such 

as understanding randomness, appropriately analyzing sample spaces, reasoning about 

correlation, and formally quantifying probability (see Bryant and Nunes, 2012, for a thorough 

and insightful discussion). This is a broad literature with numerous unanswered research 

questions. In this paper, we focus primarily on children's estimation of the probability of 

discrete events and we aim to chart the developmental trajectory of these abilities. We begin 

by briefly reviewing the relevant literatures on the development of probabilistic and 

proportional reasoning abilities as well as the approximate number system. We then present 

the results of two experiments designed to investigate the influence of numerical and non-

numerical stimulus features on children’s probability judgments and to track the development 

of the ability to reason about probability based on proportion.  

For discrete outcomes, probability is computed as a proportion of target outcomes to 

all possible outcomes. While a ratio formally describes a relation between two quantities, a 

proportion is used to assess the equality of two ratios. Although both proportions and ratios 

can be used to compare probabilities of binary outcomes, comparing ratios can be difficult 

when the total number of possible outcomes differs between two options. For example, 
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imagine a child is presented with two groups of red and white marbles and asked to choose 

the group that is most likely to yield a red marble from a single random draw. Imagine further 

that one group has 13 red marbles and 7 white marbles while the second group has 15 red 

marbles and 9 white marbles.  Representing these choices as ratios provides the observer with 

part:part comparisons, (13:7) and (15:9). While adults may be adept at computing odds based 

on ratios, children have difficulty performing these computations and often make their choice 

based on the group with the larger number of target items (in this case, red marbles) rather 

than on the proportion of red marbles to total marbles. Proportions facilitate this comparison 

by formalizing the relation between the parts (subsets of outcomes) and the whole (all 

possible outcomes). In our example, the two proportions would be 13/20 (0.65) and 15/24 

(0.625). The first group has a slightly higher chance of yielding a red marble on a single 

random draw.  Thus, the ability to compute proportions can help children accurately judge the 

equivalence of two probabilities. 

For decades, many studies have used the 2-alternative forced-choice (2AFC) random 

draw task to investigate children’s predictions about single and sequential random draws 

(Falk, Falk, & Levin, 1980; Falk, Yudilevich-Assouline, & Elstein, 2012; Piaget & Inhelder, 

1975; Siegler, Strauss, & Levin, 1981; Yost, Siegel, & Andrews, 1962). In this task, children 

are typically presented with two groups of multiple objects and asked to select the group with 

the best chance of getting a preferred object. Recently, Falk et al.(2012) conducted a 

comprehensive study of probabilistic decision making strategies using the 2AFC random 

draw task with 6- to 12-year-old children. Findings from this study revealed that young 

children often choose the group with the greatest number of target objects regardless of the 

total number of objects until around 8 years of age when children begin to attend to the whole 

set of possible outcomes rather than simply the number of target outcomes. These findings 

indicate that younger children have difficulty reasoning about probability based on 
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proportion: instead of relating a part (a subset of outcomes) to the whole (all possible 

outcomes) for each choice and choosing the group with the larger proportion of target 

outcomes, children merely compare the number of target outcomes in each choice and choose 

the group with more target outcomes.  

Much like the research on probabilistic reasoning, research on proportional reasoning 

has also shown that children’s ability to reason about proportion greatly improves over the 

school-age years (Spinillo & Bryant, 1999; Mix, Levine & Huttenlocher 1999; Mohring, 

Newcombe, Levine, & Fricke, 2015; Singer-Freeman & Goswami, 2001).  Many of these 

studies have deployed the proportional match to sample task in which a child is first 

presented with a proportional ‘target’ stimuli then presented with several similar proportions 

from which they should select the item that matches the proportions of the target stimulus. 

These methods often compare children’s choices when they are presented with proportions in 

a discrete format (i.e. discrete units of juice and water) to their choices when presented with 

the same proportions in a continuous format (i.e. portions of juice and water that do not have 

discrete units).  Using this method, researchers have reported a common error in which 

children choose the item based on matching parts rather than matching proportions (Boyer et 

al., 2008; Boyer & Levine, 2012;). This error is similar to the types of incorrect choices made 

by children in probabilistic reasoning studies discussed earlier (Piaget & Inhelder, 1975; Falk 

et al. 2012). In the proportional reasoning literature, research has shown that these errors are 

most often observed when children are presented with stimuli containing discrete, countable 

parts (Boyer et al., 2008; Boyer & Levine, 2012; Boyer & Levine, 2015; Boyer, Levine & 

Huttenlocher, 2008; Hurst & Cordes, 2018; Jeong, Levine, & Huttenlocher, 2007). These 

findings suggest that young children’s proportional judgments are influenced by their 

knowledge of whole numbers (Mix, Levine, & Huttenlocher, 1999; Sohpian & Wood, 1997; 

Sophian, 2000). Based on the findings from the proportional reasoning literature, children can 
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make accurate proportional matches when presented with proportions in a continuous format 

but they show a bias toward comparisons of parts when they are presented with proportions 

in a discrete format. In the current paper we seek to chart the developmental trajectory of the 

ability to compute the probability of discrete events based on proportion.  

Humans have remarkable abilities for reasoning about numerical magnitude 

(Feigenson, Dehaene, and Spelke, 2004; Dehaene, 1997 / 2011). Our ability to rapidly form 

accurate approximations of numerical magnitude is often referred to as the approximate 

number system (ANS) and can be observed within the first year of life (Dehaene et al., 1998; 

Izard, Sann, Spelke, & Streri, 2009; Lipton & Spelke, 2003; Wood & Spelke, 2003; Xu & 

Spelke, 2000; Xu 2003; Xu, Spelke, & Goddard, 2005). In addition to number discrimination, 

infants form expectations about approximate addition and subtraction (Chiang & Wynn, 

2000; McCrink & Wynn, 2004) and can even discriminate ratios (McCrink & Wynn, 2007). 

Furthermore, young children's performance in non-symbolic multiplication and division tasks 

(McCrink & Spelke, 2010, 2016) suggests that ANS representations play a role in 

arithmetical reasoning even when children have not been formally trained to use algorithms 

for symbolic multiplication and division. 

Decades of research on numerical processing has shown that both humans and non-

human animals are capable of forming abstract representations of number (Dehaene, 

Dehaene-Lambertz, & Cohen, 1998; Moyer & Landauer, 1967; Pica, Lemer, Izard, & 

Dehaene, 2004; Whalen, Gallistel, & Gelman, 1999). The rapid and inexact nature of ANS 

representations follows Weber’s Law (Halberda & Feigenson, 2008; Pica et al., 2004; 

Whalen et al., 1999) and thus demonstrates ratio dependence: the ability to discriminate two 

sets of objects based on number depends upon the ratio of the magnitudes of those sets. As a 

result, an observer’s ability to discriminate sets of objects based on numerical magnitude 

depends on the distance between the two numbers along a mental number line.  
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The acuity of an individual’s ANS representations can be measured using a 

psychophysical design in which sets of colored dots (i.e. yellow dots vs blue dots) are 

presented to an observer who is asked to identify the set that contains the largest number of 

dots. Importantly, experimenters using this method manipulate the ratios of the two sets of 

dots and the ‘distance effect’ is observed when smaller ratios are more difficult to 

discriminate than larger ratios.  

 The goal of the current series of experiments is to chart the developmental trajectory 

of probabilistic reasoning by measuring the acuity of children’s ability to discriminate 

probabilities based on proportions. We investigate the possibility that children’s judgments 

about probability based on proportion will demonstrate ratio dependence similar to results 

reported in the ANS literature as well as whether their probability judgments are influenced 

by the same erroneous, part:part reasoning reported in the proportional reasoning literature. 

In adults, ANS acuity is correlated with performance on approximate probability 

judgment tasks (O’Grady, Starr, Griffiths, & Xu, submitted). Researchers have reported 

distance effects in ratio magnitude comparison tasks framed as probability judgments for 12-

year-old children using methods adapted from the psychophysics of number perception 

(Fazio, Bailey, Thompson, & Siegler, 2014) and developmental researchers have also 

reported distance effects in younger children using a sequential probability task (Boyer, 

2007). The current study marks the first attempt to trace the developmental trajectory of 

children’s probability approximation abilities. 

Previous research on children’s probabilistic reasoning has employed tasks in which 

children are presented with small number of countable sets of objects which may have primed 

them to focus on the absolute number of target objects rather than the relative frequency of 

target objects (e.g., Falk et al. 2012). Based on the findings from the proportional reasoning 

literature we hypothesize that young children are capable of making rapid and accurate 
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approximations of probability based on proportions. From this hypothesis, we make three 

predictions: First, children's probabilistic discrimination abilities will demonstrate ratio 

dependence (i.e. as two proportions move further apart on the mental number line, they will 

become easier to discriminate; also known as the distance effect). Second, the ability to 

discriminate probabilities will improve with age since both proportional reasoning and 

number approximation acuity improves with age. Third, based on previous research on 

probability judgments and proportional reasoning, we predict that probability discrimination 

will be influenced by the same non-numerical features known to influence perceived 

numerosity (e.g., size of the objects). Furthermore, we investigate whether children's non-

symbolic probability estimates will be influenced by the same heuristic decision rules 

reported in previous research that required counting (Falk et al., 2012); that is, whether 

children sometimes use only the number of target objects when estimating probability as 

opposed to the correct proportion strategy.   

Experiment 1 Methods 

Participants 

Sixty 6- to 7-year-old children were recruited from local public schools and museums 

in the San Francisco Bay area. According to the National Center for Educational Statistics, 

(NCES, 2018), the schools in which we conducted the current series of experiments serve 

children from a range of racial and ethnic backgrounds (School A: 14% Asian, 5% Black, 

11% Latinx, 1% Native Hawaiian, 57% White & 12% Mixed race/ethnicity; School B: 28% 

Asian, 8% Black, 16% Latinx, 38% White & 10% Mixed race/ethnicity). Although we did 

not collect data on socioeconomic status, we conduct our experiments at local museums on 

free admission days in order to recruit families from a range of socioeconomic backgrounds. 

According to data from the United States Census Bureau, the median incomes of the three 
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communities in which data were collected are $70,393 per year, $92,670 per year, and 

$140,640 per year (U.S. Census Bureau, 2018) indicating that children in the current sample 

came from middle to upper-middle class households. 

A total of twelve children (10 six-year-olds and 2-seven-year-olds) were excluded 

because they did not pass practice trials meant to ensure that participants understood the task. 

The remaining sample of participants consisted of 24 six-year-olds (N = 24; Mean age = 

6.28; SD =0.30; 19 female) and 24 seven-year-olds (N = 24; Mean age = 7.62; SD =0.36; 20 

female). Target sample size (N=48) was determined based on previous research with similar 

tasks (Fazio et al., 2014; Halberda et al. 2008) as well as the additional constraint of ensuring 

that only children who passed practice trials were included in the final sample. Since 

Halberda et al. (2008) investigated age related differences in a simple dot approximation task 

with 16 children in each of five age groups and Fazio et al. (2014) collected data for a sample 

of 53 twelve-year-olds in a ratio comparison task but did not seek to investigate age related 

differences, we decided to split the difference and test two age groups with 24 children each. 

Material 

The images for the task were rendered using Blender 2.72, 3D animation software 

(http://www.blender.org/). Each image contained two groups of red and white marbles 

divided by a black partition. Since the goal of this experiment was to investigated the 

psychophysical properties of probability judgments, we created images with a wide range of 

proportions. The ratio of the proportions presented in each image ranged from 1.1 (55% vs. 

50%) and 14 (70% vs. 5%). Table 1 contains the ratios of the proportions used in Experiment 

1. For each ratio of proportion, two trial types were created. The total equal trials contained 

the same total number of marbles on each side of the partition, while the target equal trials 

contained the same number of target color marbles on each side with the ‘losing’ group 

containing more non-target marbles. In total, there were 100 marbles in each group in the 
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total equal trials while target equal trials contained one group with 100 marbles matching the 

‘losing’ proportion and another group containing an equal number of target color marbles and 

enough non-target color marbles to match the ‘winning’ proportion. Importantly, the 

difference in the total amount of marbles created a large contrast between the field areas of 

the ‘winning’ and ‘losing’ groups. In order to reduce the chances that this contrast could cue 

participants to choose the group with the smallest field area we also created an additional set 

of ‘foil’ trials in which the ‘winning’ group contained more marbles and thus a larger field 

area than the ‘losing’ group. Figure 1 contains a visual schematic of the procedure with an 

example of each trial types as well as an example foil trial image. 

Insert Table 1 here 

Insert Figure 1 here 

Procedure 

After their parents signed a written consent form approved by the University of 

California Berkeley Committee for the Protection of Human Subjects (CPHS) children were 

asked to provide verbal assent to participate in the study. Children were then seated in front 

of a MacBook Pro laptop (OSX; Screen resolution 1280 x 800) and were told that they were 

going to play a game in which they would help Big Bird collect marbles. Half of the children 

were instructed to collect red marbles and the other half were asked to collect white marbles. 

An experimenter explained that Big Bird could not see the contents of the bags of marbles 

and that he would take a single marble randomly from the bag that the child chooses. The 

child was then reminded that Big Bird preferred either red or white marbles and that they 

should choose the group which was best for getting a marble of that color. The experimenter 

then told the children that one choice was always better than the other and that some of the 

trials might seem easy while others may be more difficult. Furthermore, if they were 

uncertain about which group to choose, they should try to make their best guess. In order to 
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reduce the influence of age related differences in formal understanding of the words 

‘probability’ and ‘proportion’, the experimenter never explicitly mentioned the words 

‘probability’ or ‘proportion’ during the instructions. Children were then presented with four 

practice trials with two groups of marbles, one containing all red marbles while the other 

contained all white marbles. Participants were told that the practice trials were intentionally 

easy and were meant to teach them how the game worked. 

Each participant was presented with 40 test trials and 10 foil trials in one of two semi-

randomized orders using the psychophysics toolbox (Brainard, 1997,Pelli (1997); Kleiner, 

Brainard, & Pelli, 2007) written for the MatLab programing language. Since previous 

research using a similar design presented images with fewer objects for 1320ms (Fazio et al., 

2014) we decided to present the images for 1500ms to allow our younger participants more 

time. Following stimulus presentation, participants saw a screen containing the Big Bird 

character flanked by two bags labeled with a blue ‘1’ and a green ‘2’. Participants were 

instructed to press a key marked by a sticker matching the color of the number on the bag 

they wanted Big Bird to draw a marble from. Intermission videos in the form of a 30 second 

animation were used to give children a break during the game and were presented after the 

15th, 30th, and 40th trials. Importantly, children did not receive feedback on their choices 

until the end of the game at which point every child saw the same screen containing 40 white 

or red marbles and was told ‘Wow, you did really good! Look how many red/white marbles 

you got!’. The computer collected both reaction time and participant choice for each trial. 

Once the participant completed the last trial, they saw a screen containing 40 marbles that 

matched their target color and were told that these were the marbles that they had collected 

during the game. A visual schematic of the procedure is presented in Figure 1. 
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Results 

Using the binomial exact test we find that performance on foil trials was above chance 

for both 6-year-olds (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.79, 95% CI [0.73, 0.84], 𝑝 < .001) and 

7-year-olds (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.97, 95% CI [0.94, 0.99], 𝑝 < .001) suggesting 

that children did not learn to merely select the smallest group when presented with groups of 

different sizes. Foil trials were excluded from the remainder of analyses. 

Reaction time 

Reaction time data were cleaned for outliers by excluding reaction times which were 

either greater or less than 3 Median Absolute Deviations (MADs) from each participant’s 

median reaction time. Since the median is relatively insensitive to the effects of outliers 

compared to the mean, this method is thought to be a superior method for identifying outlying 

reaction time data (Leys, Ley, Klein, Bernard, & Licata, 2013). Use of this procedure resulted 

in the exclusion of 198 of the 1920 total trials (10.31%). In order to report the most accurate 

representations of the data, all of analyses reported in this paper were conducted on the 

dataset in which trials in which outlying reaction time were excluded. Exclusion of these data 

do not change the results for any of the following analyses including general accuracy and 

statistical modeling. Results of the same analyses conducted on the complete dataset are 

reported in the Online Supporting Information. Comparisons of performance for all included 

trials revealed that the reaction time for both age groups was significantly faster on the total 

equal trials (6-year-olds: M = 1,121.67 ms, SD = 923.22 ms; 7-year-olds: M =642.57 ms, SD 

= 508.97) compared to the target equal trials (6-year-olds: M = 1,366.98ms, SD = 1,163.47; 

𝛥𝑀 = 245.31, 95% CI [−386.98, −103.63], 𝑡(781.47) = −3.40, 𝑝 = .001; 7-year-olds: 

M = 758.51 ms, SD = 547.90; 𝛥𝑀 = 115.94, 95% CI [−186.55, −45.33], 𝑡(852.71) =

−3.22, 𝑝 = .001).  
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General accuracy 

Children in both age groups performed significantly above chance on both total equal 

(6-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.78, 95% CI [0.74, 0.82], 𝑝 < .001; 7-year-olds: 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.91, 95% CI [0.88, 0.93], 𝑝 < .001; binomial exact test) and 

target equal trial types (6-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.67, 95% CI [0.62, 0.71], 

𝑝 < .001; 7-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.85, 95% CI [0.82, 0.89], 𝑝 < .001; 

binomial exact test). Figure 2 presents the average performance by ratio of proportions and 

trial type for both age groups. 

Insert Figure 2 here 

Statistical modeling 

Generalized Linear Models with Mixed effects (GLMMs) predicted the participant’s 

binary response variable from age, trial type, and ratio of proportions while controlling for 

the random effects of participant identification number. Preliminary analyses revealed no 

effects of gender, color of target marble, and order of presentation. For both nested and non-

nested models, we use Akaike Information Criterion (AIC) as a method of model selection. 

AICs are presented alongside the results of chi-square tests of model fit for nested models. 

Comparisons of GLMMs revealed that the model with the best fit to the data predicted 

the participant’s response based on trial type, participant age group and the ratio of 

proportions with no interactions (𝐴𝐼𝐶!!!!"!!! =1,459.66). This model outperformed the null 

model (𝐴𝐼𝐶!"## =1,491.36; 𝜒!= 37.69; df = 3; p < .001), the models for trial type (𝐴𝐼𝐶!! 

=1,472.13; 𝜒!= 16.47; df = 2; p < .001) and ratio of proportions (𝐴𝐼𝐶!" =1,486.34; 𝜒!= 

30.67; df = 2; p < .001), as well as the models based on trial type and age group (𝐴𝐼𝐶!!!!"  

=1,463.98; 𝜒!= 6.31; df = 1; p = .01) and the interaction of trial type and age group 

(𝐴𝐼𝐶!!∗!"  =1,465.86). Furthermore, the models which accounted for the interaction between 

age and ratio of proportions (𝐴𝐼𝐶!!!!"∗!" =1,461.12; 𝜒!= 0.55; df = 1; p = .46), trial type 
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and ratio of proportions (𝐴𝐼𝐶!!∗!"!!" =1,461.37; 𝜒!= 0.29; df = 1; p = .59) and the three-

way interaction between trial type, age, and ratio of proportions (𝐴𝐼𝐶!!∗!"∗!" =1,466.07; 

𝜒!= 1.59; df = 4; p = .81) were not significantly different from the model without 

interactions. Importantly, these models have a greater number of parameters yet they yield 

relatively inconsequential improvements in model fits. In this case, the simpler model is 

preferred because it explains the same amount of variance with fewer parameters.  

The preferred model predicts the participant’s binary response based on trial type, age 

group and the ratio of proportions of the presented image (𝛽!"#$%&$'# = 0.75; SE = 0.26; 95% 

CI [0.24, 1.26]). Inspection of the exponentiated model coefficients revealed that total equal 

trials led to an 85% increase in the odds of obtaining a correct answer (𝛽!! = 0.62; SE = 0.14; 

95% CI [0.35, 0.89]). The main effect of age indicated that 7-year-olds performed better than 

6-year-olds with the odds of a correct response increasing by a factor of 3.25 for 7-year-olds 

compared to 6-year-olds (𝛽!"  = 1.18; SE = 0.35; 95% CI [0.49, 1.87]). Lastly, we report a 

main effect of the ratio of proportions with a unit increase in ratio of proportions leading to a 

5% increase in the odds of a correct response (𝛽!" = 0.05; SE = 0.02; 95% CI [0.01, 0.09]). 

Analyses of reaction times yielded similar results details of which can be viewed in the 

Online Supporting Information. 

Discussion 

In Experiment 1, our results showed that 6- and 7-year-old children’s non-symbolic 

probability judgments were predicted by the ratio of proportions (i.e., the distance effect). As 

the ratio of proportions of the two distributions becomes larger, performance improved. 

These findings are consistent with similar studies with adults (O’Grady, Griffiths, & Xu, 

2016; O’Grady et al., submitted) and older children (Fazio et al., 2014).  Falk et al. (2012) 

report that children’s probabilistic judgments gradually improve with age and that by the age 

of 8 children are capable of using the correct proportional strategy. Results from Experiment 
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1 support these findings. While 7-year-old children performed better than 6-year-old children, 

both age groups performed worse on target equal trials compared to total equal trials, 

indicating that on some trials children may have focused on either the number of target 

objects or the number of non-target objects without relating the two quantities. 

Although the results from Experiment 1 provide novel insight into how young 

children approximate and reason about binary probabilities, three important design features 

limit the strength of our findings. First, the images in Experiment 1 consisted of marbles 

neatly arranged into orderly rows and columns which may have helped some children more 

accurately approximate the number of marbles in each group. Second, the use of target equal 

trials makes it difficult to assess whether participants were focusing on the number of target 

objects or the number of non-target objects. Lastly, all of the marbles in Experiment 1 were 

the same size yet much of the research using dot approximation tasks has indicated that 

number approximation is influenced by non-numerical stimulus features such as size and 

sparsity (Allik, Tuulmets, & Vos, 1991; DeWind, Adams, Platt, & Brannon, 2015; Starr, 

DeWind, & Brannon, 2017). In order to address these concerns, we designed new stimuli 

consisting of (1) smaller numbers of marbles randomly positioned on the screen, (2) trials in 

which the group with a larger proportion of target color marbles contained fewer marbles of 

the target color than the group with the smaller proportion of target color marbles (3) trials in 

which the target marbles in the ‘losing’ distributions were larger than the target marbles in 

the ‘winning’ distribution. Since we expected each of these changes to increase the difficulty 

of the task and performance of the 6-year-olds in Experiment 1 was already relatively low, 

we decided to test older children for Experiment 2. 

Experiment 2: Methods 

Participants 
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One hundred and forty-two children between the ages of 7 and 12 were recruited from 

local schools and children's museums from the San Francisco Bay area. Twelve of these 

children were excluded from our analyses: eight children were excluded due to experimenter 

error, three children did not pass the practice trials, and one child’s parent interfered in the 

study by coaching their child to choose the group with a larger proportion of target marbles. 

As with Experiment 1 our target sample size was determined based on previous research 

(Fazio et al., 2014). However, since our target age range was much larger (7- to 12-year-

olds), data collection continued according to a stopping rule requiring a minimum of 40 

participants in each of three age groups (7- to 8-year-olds, 9- to 10-year-olds, and 11- to 12-

year-olds). The final sample consisted of forty 7- and 8-year-olds (N = 40; Mean age = 7.96; 

SD = 0.53; 24 female), fifty 9- and 10-year-olds (N = 50; Mean age = 10.04; SD = 0.50; 20 

female), and forty 11- and 12-year-olds (40; Mean age = 11.75; SD = 0.64; 18 female). Data 

collection was conducted in the same schools and communities reported in Experiment 1. 

Material 

As mentioned above, the orderly arrangement of marbles in Experiment 1 may have 

helped children approximate the number of marbles in each group. In order to prevent this, 

the location of each marble was randomly generated for each image using Blender 2.72. Due 

to the ceiling levels of performance for high ratios of proportions in Experiment 1 we decided 

to include more trials with lower ratios of proportions, ranging from 1.1 (55% vs. 50%) to 9.5 

(95% vs. 10%). We also decided to include ratios of two proportions that were both below 

chance (i.e. 40% to 15%). Table 2 presents the proportions of marbles in each group 

alongside the ratios of proportions used in Experiment 2. For each ratio of proportions, three 

trial types were created: total equal trials in which each distribution had the same total 

number of marbles; area-anticorrelated trials in which the sizes of the marbles were 

manipulated such that the total area covered by the target marbles in the ‘losing’ group was  
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larger than the total area covered by the target marbles in the ‘winning’ group. Importantly, 

area-anticorrelated trials included groups of marbles with an equal total amount of marbles 

similar to total equal trials. Finally, number vs. proportion trials in which the distribution 

with the lower proportion of target marbles contained a larger number of target marbles. A 

total of 264 Images were rendered and then divided equally into four conditions based on 

target color and the order of presentation of the images. Each participant viewed 66 images 

presented in one of four conditions (Red, order 1; Red, order 2; White, order 1; and White, 

order 2). Importantly, the order of the images was pseudorandomized such that there were no 

more than 3 consecutive trials in which the 'correct' choice was on the same side of the 

screen. 

Insert Table 2 here 

Procedure 

After parental guardians provided written consent for their children to participate in 

the study, children were asked to provide verbal assent and were then seated in front of a 

MacBook Pro laptop (OSX; Screen resolution 1280 x 800). Participants were told that they 

were going to play a game in which they would collect red or white marbles depending on the 

condition to which they were assigned. Children were shown two boxes and told that they 

would see two groups of marbles on two trays on the screen. The group of marbles on the left 

side of the screen were poured into the box on the left and the group on the right side of the 

screen were poured into the box on the right side of the screen. The boxes would then be 

shaken up so that they could not infer the positions of the marbles based on their locations on 

the viewing trays. They were then asked to select the box that they thought was best for 

collecting their target color marble. After the instructions phase participants played 4 practice 

trials in order to ensure that they understood the game. Once the practice trials were 



 18 

complete, participants were presented with 66 semi-randomized test trials in which they were 

able to view the images for 1500 ms before making their selection. As with Experiment 1 

short intermission videos were played after the 15th, 30th, and 45th trials, children were not 

given any feedback about their decisions, and the experimenter never mentioned the words 

‘probability’ or ‘proportion’. Figure 3 provides a visual schematic of the procedure. 

Insert Figure 3 here 

Results 

Reaction time 

The same procedure employed in Experiment 1 for cleaning outlying reaction time 

resulted in the exclusion of 1383 out of 8580 trials (16.12%). As with Experiment 1, 

exclusion of trials with outlying reaction time does not change the reported results. A report 

of the results of the same analyses for the complete dataset for Experiment 2 are included in 

the Online Supporting Information. Of the included trials, reaction times were significantly 

lower on total equal trials (M = 815.29 ms, SD = 466.83) and number vs. proportion trials (M 

= 819.06 ms, SD = 441.59) compared to area-anticorrelated trials (M = 888.15 ms, SD = 

480.37; total equal: 𝛥𝑀 = 72.86, 95% CI [−99.77, −45.95], 𝑡(4,758.99) = −5.31, 

𝑝 < .001; number vs. proportion: 𝛥𝑀 = 69.09, 95% CI [−95.08, −43.11], 𝑡(4,805.06) =

−5.21, 𝑝 < .001). The difference between total equal trials and number vs. proportion trials 

did not reach significance (𝛥𝑀 = 3.77, 95% CI [−29.55, 22.00], 𝑡(4,741.64) = −0.29, 

𝑝 = .774). 

General accuracy 

Results of the binomial exact tests comparing performance against chance revealed 

that children in all three age groups performed significantly above chance on both total equal 

trials (8-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.78, 95% CI [0.75, 0.81], 𝑝 < .001; 10-
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year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.87, 95% CI [0.85, 0.89], 𝑝 < .001; 12-year-olds: 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.91, 95% CI [0.88, 0.93], 𝑝 < .001) and area-anticorrelated 

trials (8-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.60, 95% CI [0.57, 0.64], 𝑝 < .001; 10-

year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓𝑠 𝑢𝑐𝑐𝑒𝑠𝑠 = 0.69, 95% CI [0.66, 0.72], 𝑝 < .001; 12-year-olds: 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.61, 95% CI [0.57, 0.64], 𝑝 < .001). Finally, 12-year-old and 

10 -year-old children performed significantly better than chance on number vs. proportion 

trials (10-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.55, 95% CI [0.52, 0.58], 𝑝 = .003; 12-

year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.61, 95% CI [0.57, 0.64], 𝑝 < .001) while 8-year-

olds’ performance was not significantly different from chance on number vs. proportion 

trials (8-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.46, 95% CI [0.43, 0.50], 𝑝 = .056). Figure 

4 presents the proportion of correct responses by ratio of proportions, trial type, and age 

group. 

 

Insert Figure 4 here 

Statistical modeling 

As with Experiment 1, we compared Generalized Linear Models with Mixed effects 

(GLMM) and used Akaike Information Criterion (AIC) as our method for model selection for 

non-nested models and chi-square tests for nested models. Results of the model comparisons 

revealed that the model predicting performance from the 3-way interaction between trial type, 

ratio of proportions, and age group (𝐴𝐼𝐶!"##$%&'# =7,412.06) outperformed all other models 

including the null model (𝐴𝐼𝐶!"## =8,503.15; 𝜒!= 1,125.10; df = 17; p < .001), the models for 

trial type (𝐴𝐼𝐶!! =7,887.38; 𝜒!= 505.32; df = 15; p < .001), ratio of proportions (𝐴𝐼𝐶!" 

=8,147.82; 𝜒!= 767.76; df = 16; p < .001) as well as more complex models based on trial 

type and age group (𝐴𝐼𝐶!!!!"  =7,864.39; 𝜒!= 478.33; df = 13; p < .001), trial type and ratio 

of proportions (𝐴𝐼𝐶!!!!" =7,488.82; 𝜒!= 104.77; df = 14; p < .001), the interaction of trial 
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type and ratio of proportions (𝐴𝐼𝐶!!∗!"!!"  =7,444.83; 𝜒!= 80.47; df = 12; p < .001) and the 

interaction of trial type and age group (𝐴𝐼𝐶!!∗!"!!" =7,444.83; 𝜒!= 68.53; df = 8; p < .001).  

Coefficients in logistic regression indicate the change in log-odds of a correct response 

based on changes in experimental and subject variables. It is easiest to express these changes 

by exponentiating the coefficients to reveal the change in odds and to relate these changes to 

the baseline group: 8-year-olds' responses to total equal images (𝛽!"#$%&$'# = 0.88). 

Exponentiated model coefficients for main effects of trial type revealed Number vs. 

proportion trials led to an 82% reduction in the odds of a correct response (𝛽!"# = -1.73) 

while area anticorrelated trials only lead to a 52% decrease in the odds (𝛽!! = -0.75). Main 

effects of age indicated that performance improved with each age group (𝛽!"#!" = 0.25; 

𝛽!"#!" = 0.21). Since the ratio of proportions is a continuous variable, the associated 

coefficient revealed that a single incremental change in ratio of proportions led to a 15% 

increase in the odds of a correct response (𝛽!" = 0.14). The only interaction term to reach 

significance indicated that the effect of ratio of proportions increased for 12-year-olds 

compared to the younger children (𝛽!"#!"!"# = 0.14). The full set of fixed effect model 

coefficients are presented in Table 4 in the Online Supporting Information. Analyses of 

reaction time data from Experiment 2 revealed a similar pattern of results, the details of 

which are available in the Online Supporting Information. 

Discussion 

Experiment 2 replicated the main results of Experiment 1 and extended these findings 

by including three trial types (i.e., total equal, number vs. proportion, and area-anticorrelated) 

and three age groups. As in Experiment 1, we found that the performance of children of all 

three age groups was strongly influenced by the ratio of proportions, converging with results 

from adults using a very similar methodology (O’Grady, Griffiths, & Xu, submitted) and 
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those of Fazio et al. (2014) with 12-year-old children. By including area-anticorrelated trials, 

our results revealed that children relied on both numerical and non-numerical stimulus 

features; that is, children made more errors when the total area of the target marbles was 

larger in one distribution even when the proportion of target marbles was smaller in that 

distribution. The model coefficient for area anticorrelated trials suggests that children of all 

ages were influenced by this manipulation, indicating that non-numerical stimulus features 

influence probability judgments. By including number vs. proportion trials, our results 

revealed that children up to 10 often used a formally incorrect strategy in estimating 

proportions and probability; that is, they used the number of target marbles in a distribution 

as a proxy for estimating the proportion of target marbles. The only age group that performed 

above chance level on these trials was the oldest (12-year-olds), and their accuracy was far 

from perfect (only 60%). 

General Discussion 

In two experiments, we provide evidence that 6- to 12-year-old children can make 

rapid and accurate approximations of probability based on proportions. Our findings are 

consistent with the results of other ratio comparison tasks with adults (O’Grady et al., 

submitted), 12-year-old children (Fazio et al., 2014) and non-human primates (Drucker, 

Rossa, & Brannon, 2016). More importantly, our results shed new light on the development 

of proportional and probabilistic reasoning. In Experiment 1 we report data demonstrating 

that 6- and 7-year-olds' non-symbolic probability judgments are characterized by ratio 

dependence and that the acuity of these representations improves with age. Experiment 2 

replicated these findings and also revealed that non-symbolic probability judgments are 

influenced by the same numerical and non-numerical stimulus features which influence 

perceived numerosity such as the size of dots in a dot discrimination task. Data from both 

experiments also suggests that children produced similar errors in our non-symbolic 
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probability estimation task compared previous research using the 2AFC random draw task 

(Falk et al. 2012) as well as studies on children’s proportional reasoning (Boyer, Levine & 

Huttenlocher, 2008; Hurst & Cordes, 2018). More specifically, children’s performance was 

influenced by the number of target marbles as evidenced by their decreased performance on 

number vs proportion trials relative to total equal trials.  

These findings make three important contributions to the literature on probabilistic 

reasoning, proportional reasoning, and quantitative development in general. First, we provide 

evidence that children’s probability judgments are characterized by ratio dependence and 

even young children can make accurate judgments about the likelihood of future events based 

on proportions. Second, our current experiments represent the first attempt to systematically 

investigate the mental representation and psychophysical properties of non-symbolic 

probability in the developing human mind. We provide evidence that school-age children’s 

probability estimation is influenced by the size of the objects being approximated.  Third, 

previous research has not charted the developmental trajectory of the mental representation of 

non-symbolic probability.  We provide the first evidence that between 6 and 12, children’s 

ability to estimate probability improves with age, and they gradually adopt the correct 

proportion strategy although they continue to make errors by sometimes employing heuristic 

decision rules.   

The results of the current experiments provide new insights on the role of proportional 

reasoning in children's probability judgments; they also raise important questions for future 

research.  In the current studies, 9- to 12-year-old children performed above chance in the 

number vs. proportion trials, whereas the 8-year-olds did not.  In contrast, there is some 

evidence suggesting that both infants and non-human primates can use ratio of proportions in 

estimating probability (Denison & Xu, 2014, Rakoczy et al. 2014). In one study, infant 

participants observed an experimenter randomly draw a single lollipop from each of two 
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groups of preferred and non-preferred color lollipops (Denison & Xu, 2014). Infants were 

more likely to approach the lollipop drawn from the distribution with a larger proportion of 

preferred lollipops even when the total number of lollipops in both groups varied such that 

the group with the lower proportion actually contained more of the infant's preferred 

lollipops. It may be the case that ANS acuity improves with age, and the current studies used 

ratios of proportions that were more difficult than that of Denison and Xu (2014).  However, 

in Experiment 2 of Denison and Xu (2014), infants performed above chance when presented 

a ratio of proportions of 4 (80% target objects in one distribution vs. 20% target objects in the 

other distribution).  The current studies included the same ratio of proportions yet it is not 

until about 9 that children succeeded on the number vs. proportion trials. One possible 

explanation for this is that older children’s poor performance on these trials may be due to the 

'whole number bias' reported in the education literature on rational number learning (Ni & 

Zhou, 2005). In the fraction learning literature, the ‘whole number bias’ is observed most 

often when children choose the larger of two fractions based on the magnitude of the 

components of the fractions (i.e. by choosing the fraction with the larger numerator or 

denominator) rather than selecting the larger fraction based on the relation between 

numerator and denominator. The literature on probability reasoning has investigated this 

same response bias in the context of probability predictions beginning with the seminal work 

of Piaget & Inhelder (1975) and recent work (Falk et al. 2012) has indicated that this type of 

response bias constitutes a strategy that younger children use in 2AFC probability judgment 

tasks. 

The integrated theory of numerical development (Siegler, 2016; Siegler, Thompson, 

& Schneider, 2011) posits that children come to understand rational numbers through analogy 

to whole numbers and evidence from studies on proportional reasoning suggests that children 

overextend their knowledge of whole numbers when reasoning about proportions presented 
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as discretized units rather than continuous quantities (Boyer, Levine, & Huttenlocher, 2008; 

Mix, Huttenlocher, & Levine, 2002). It is possible that an overreliance on whole number 

knowledge led to younger children's incorrect choices on number vs. proportion trials. To 

explore this possibility, we are currently developing a modified version of our probability 

discrimination task for use with much younger, preschool-age children and toddlers. The 

prediction is that much younger children may succeed in using proportions to estimate 

probability (consistent with the findings with infants) whereas older, school-age children may 

adopt the whole number strategy. Indeed, preliminary evidence (O’Grady & Xu, 2018) has 

shown that school age children demonstrate a whole number bias when making probability 

judgment tasks involving both exact and approximate quantities but this bias can be 

overridden if the child is provided with enough feedback. 

Our experiments also raise new questions about the role of magnitude processing in 

proportional reasoning and probabilistic estimation. The current body of literature suggests 

two possibilities. One is that the Approximate Number System serves as a building block for 

computing probabilities. According to this account, children first approximate the number of 

marbles of each type within each group and then use these approximate representations to 

compute the probabilities. Specifically, probabilities are computed as follows: (number of 

target objects) / (number of target objects + number of non-target objects). A second 

possibility suggests that children bypass discrete number approximations altogether and 

simply approximate ratios using a Ratio Processing System (RPS). Recent research has 

provided a wealth of evidence to suggest that ratio processing is fundamental to human 

numerical cognition (Matthews & Chesney, 2015; Matthews & Lewis, 2017), and thus 

constitutes a basic building block for learning symbolic fractions (Matthews, Lewis, & 

Hubbard, 2015). While we agree that ratio processing is foundational for mathematics 

learning, it is unclear whether the RPS and the ANS are two separable systems. Indeed 
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researchers studying early numerical development have recently argued that there exists a 

general magnitude processing system in the brain, that includes estimations of number 

(integers, proportions, and probability), duration, and spatial extent  (Mix, Levine, & 

Newcombe, 2016; Lourenco, 2016). Thus, we tend to favor the former claim that children 

draw on ANS representations for three reasons. First, it is unclear at the moment whether the 

RPS exists independently of the ANS. Second, in order to calculate the probability of a 

discrete event, decision-makers must represent discrete outcomes. It is possible that the RPS 

may be able to compute proportions of discrete elements and this is exactly the type of 

argument that would support the notion that RPS and ANS are two elements of a more 

generalized magnitude processing system. Indeed, Jacob, Valentin, & Nieder (2012) have 

suggested that the ANS may provide one source of input for the RPS. Third, children’s 

performance on number vs proportion trials in our experiment suggests that number 

approximations may play an important role in their probability judgments. This claim is 

clearly speculative based on the current series of studies, but it provides an important avenue 

for future research and the domain of probabilistic reasoning offers an interesting way to 

study the relationship between the ANS and RPS. 

Lastly, the current studies are also limited in the types of probabilistic reasoning they 

address. Based on the findings in the proportional reasoning literature (Boyer et al., 2008), a 

natural extension of the current work is to investigate whether children rely on the same 

heuristic decision rules we find for discrete probability (i.e. marbles drawn from a container) 

when making judgments about continuous probability (i.e. spinner tasks). Furthermore, the 

current set of experiments focus exclusively on simultaneously presented visual information, 

thus the role of number and ratio approximation in judgments about sequentially presented 

probability problems, similar to the methods reported in Boyer (2007), cannot be addressed 

by the current findings. Future work will investigate whether children and adults rely on ratio 
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processing and integer approximation when tracking and computing the probability of 

sequentially presented stimuli.  

These findings indicate that children can make rapid estimations about the probability 

of discrete outcomes. Furthermore, we have shown that these representations share some 

common features with perceptual systems for processing numerical magnitude. By linking 

the developmental literatures on the approximate number system and probabilistic reasoning 

we have demonstrated children’s intuitive ability to estimate probability is surprisingly 

accurate. While our results are perhaps most relevant to researchers and educators studying 

the development of numerical cognition and quantitative development, they may also inform 

research from a variety of subfields in developmental psychology, such as the development of 

decision-making strategies and scientific reasoning.  

All methods, analyses, and de-identified data are available on the Open Science 

Framework (https://osf.io/48sgv/) 
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Table 1  
Proportions presented in each trial of Experiment 1. 
Proportion group 1 Proportion group 2 Ratio of Proportions 

0.55 0.50 1.10 
0.70 0.60 1.17 
0.55 0.45 1.22 
0.80 0.60 1.33 
0.80 0.55 1.45 
0.60 0.40 1.50 
0.70 0.40 1.75 
0.55 0.30 1.83 
0.60 0.30 2.00 
0.70 0.30 2.33 
0.80 0.30 2.67 
0.75 0.25 3.00 
0.70 0.20 3.50 
0.80 0.20 4.00 
0.90 0.15 6.00 
0.80 0.10 8.00 
0.90 0.10 9.00 
0.50 0.05 10.00 
0.55 0.05 11.00 
0.70 0.05 14.00 

Note. Ratios of Proportions are rounded to 2 decimal points. 
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Table 2  
Proportions presented in each trial of Experiment 2. 
Proportion group 1 Proportion group 2 Ratio of Proportions 

0.55 0.50 1.10 
0.50 0.45 1.11 
0.45 0.40 1.12 
0.55 0.45 1.22 
0.80 0.60 1.33 
0.80 0.55 1.45 
0.75 0.50 1.50 
0.60 0.40 1.50 
0.95 0.55 1.73 
0.95 0.50 1.90 
0.50 0.25 2.00 
0.40 0.15 2.67 
0.60 0.20 3.00 
0.50 0.15 3.33 
0.80 0.20 4.00 
0.40 0.10 4.00 
0.75 0.15 5.00 
0.95 0.15 6.33 
0.80 0.10 8.00 
0.85 0.10 8.50 
0.90 0.10 9.00 
0.95 0.10 9.50 

Note. Ratios of Proportions are rounded to 2 decimal points. 
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Figure 1. A visual schematic of the experimental procedure used in experiment 1. The sample 
image at the top presents a total equal trial, the third image from the top presents a sample 
target equal trial, and the image at the very bottom of the figure presents a sample of the foil 
trials used to prevent participants from learning to choose the group with the smaller amount 
of marbles. 
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Figure 2. Average performance by ratio of proportions and trial type for both 6-year-olds (A) 
and 7-year-olds (B). Error bars indicate bootstrapped 95% confidence intervals. 
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Figure 3. Diagram of the experimental procedure used in Experiment 2. The sample image at 
the top presents an area anti-correlated  trial, the sample image in the middle presents a total 
equal trial and the sample image at the bottom presents a number vs. proportion trial. 
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Figure 4. Average performance by the log of ratio of proportions and trial type. A) 8-year-
olds. B) 10-year-olds. C) 12-year-olds. Error bars indicate bootstrapped 95% Confidence 
Intervals. 

 


