is not to be disseminated broadly.

n or one of its allied publishers.

and

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user

MERICAN
SYCHOLOGICAL
ASSOCIATION

_a—
S\
P

Psychological Review

© 2019 American Psychological Association
0033-295X/19/$12.00

2019, Vol. 126, No. 6, 841-864
http://dx.doi.org/10.1037/rev0000153

Towards a Rational Constructivist Theory of Cognitive Development

Fei Xu

University of California, Berkeley

This article provides a synthesis and overview of a theory of cognitive development, rational construc-
tivism. The basic tenets of this view are as follows: (a) Initial state: Human infants begin life with a set
of proto-conceptual primitives. These early representations are not in the format of a language of thought.
(b) Mature state: Human adults represent the world in terms of a set of domain-specific intuitive theories.
(c) Three types of mechanisms account for learning, development, and conceptual change: language and
symbol learning, Bayesian inductive learning, and constructive thinking. (d) The child is an active
learner, and cognitive agency is part and parcel of development. I will discuss each of these tenets, and
provide an overview of the kind of empirical evidence that supports this view. This is a non-Piagetian
view though it is in the spirit of constructivist theories of development; this view emphasizes the utility
of formal computational models in understanding learning and developmental change. Lastly, this view
also has implications for the study of philosophy of mind and epistemology.
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Anything that gives us new knowledge gives us an opportunity to be
more rational.
—Herbert A. Simon

The study of cognitive development has made great strides in
the last few decades. Using the theoretical and empirical tools of
developmental psychology and cognitive science, we have devel-
oped a much clearer view of how a human infant grows from what
was once thought of as “a blooming, buzzing confusion” (William
James, 1890/1981) to a highly competent and sophisticated thinker
and learner. A theory of cognitive development (and developmen-
tal psychology and developmental cognitive science in general) is
often characterized as follows: (a) What is the initial state? That is,
what does a human learner begin with in terms of her perceptual
and cognitive capacities? (b) What is the mature state? That is,
where does a human learner end up in terms of her conceptual
system as an adult? (c) What are the representations and learning
mechanisms that support a learner’s progression from a tiny hu-
man to a functioning citizen of the modern world? That is, are
there representational changes along the way, and what are the
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mechanisms that drive learning, development, and conceptual
change?

This article takes up this challenging task of answering these
questions, and provides a synthesis and overview of a theory of
cognitive development, namely rational constructivism. This the-
oretical framework is committed to a representational, computa-
tional view of the mind (e.g., Chomsky, 1987; Fodor & Pylyshyn,
1988). The central tenets of a rational constructivist theory of
cognitive development are as follows (cf. Fedyk & Xu, 2018; Xu,
2007; Xu, Dewar, & Perfors, 2009; Xu & Griffiths, 2011; Xu &
Kushnir, 2012, 2013; see Gopnik & Wellman, 2012, for a related
but different proposal):

1. The initial representations of a human infant may be best
characterized as a set of proto-conceptual primitives.
These representations are neither perceptual or sensori-
motor in the traditional sense (as has been claimed by
other constructivist theories), nor fully conceptual (as has
been claimed by core knowledge theories). These repre-
sentations are not in the format of a language of thought
(LOT; Fodor, 1975). Equally important, the young hu-
man infant has a large toolbox of learning mechanisms
that go beyond simple associative learning mechanisms.

2. The mature state of a human learner’s mature conceptual
system may be best characterized as a set of domain-
specific intuitive theories, for example, intuitive physics,
intuitive psychology, intuitive biology, intuitive sociol-
ogy, and so forth. These are structured, abstract repre-
sentations that are theory-like; in the computational cog-
nitive science literature, they are often referred to as
generative models (see Carey, 1985, 1988, 1991, 2009;
Gopnik et al., 2004; Gopnik & Meltzoft, 1997; Gopnik &
Wellman, 2012; Leslie, 1994; Spelke, Breinlinger, Ma-
comber, & Jacobson, 1992; Spelke & Kinzler, 2009;
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Tenenbaum, Kemp, Griffiths, & Goodman, 2011; Well-
man & Gelman, 1992; Xu & Tenenbaum, 2007a, 2007b).
Intuitive theories are causal explanatory frameworks that
consist of a set of interconnected concepts and beliefs,
expressed as propositional attitudes (i.e., sentences in a
natural language).

3. Three types of learning mechanisms drive learning, de-
velopment, and conceptual change: (a) language and
symbol learning, which occurs throughout early child-
hood and beyond; (b) Bayesian inductive learning, which
provides a mechanism for rational belief revision; (c)
Constructive thinking, which includes a set of ‘learning
by thinking’ mechanisms such as thought experiment,
analogy, explanation, mental imagery, and mental simu-
lation (Gendler, 2000; Lombrozo, 2018). These mecha-
nisms may be characterized as mechanisms for hypoth-
esis generation, conceptual change, and theory change.

4. The child is an active learner. This is the claim that a
human learner, from infancy on, is not a passive recipient
of information from the environment; instead she plays a
critical role in driving her own learning and development
(Bruner, 1961; Bruner, Jolly, & Sylva, 1976; Gopnik &
Wellman, 2012; Gureckis & Markant, 2012; Piaget,
1954; Schulz, 2012; Singer, Golinkoff, & Hirsh-Pasek,
2006). The child is not just a competent and sophisticated
data processor, making good use of the input from her
environment; she is also at least some of the time a
good/rational information seeker or even data generator.

The rest of this article explicates each of these claims, and
provides an overview of the kind of empirical evidence that
supports them. I will end with a few additional discussion points,
focusing on the issues of why rational constructivism is a non-
Piagetian view, the utility of computational models in the study of
cognitive development, some implications for epistemology, and
lastly, future directions of research.

The Initial State: Proto-Conceptual Primitives

Much of the study of cognitive development in the last few
decades has focused on characterizing the initial state of the human
infants. This is unsurprising because it is essential for any discus-
sion of learning and development to begin with an understanding
of what infants come to the world with: Has eons of evolution
endowed the child with innate concepts and knowledge, and are
they uniquely human? Until about the mid-1980s we did not have
many methodological tools at our disposal to study the infant
mind. With the development of violation-of-expectation looking-
time methods, anticipatory looking, eye-tracking, search methods,
and imaging methods such as NIRS, ERP, and fMRI, we have
made a lot of progress in understanding the infant mind.

Taking stock of an ever-growing, fast-changing body of re-
search on infant cognition, it is perhaps time to rethink how best to
characterize the infant mind in terms of the nature of the repre-
sentations. Two views have been put forth in the literature and
discussed extensively. On the one hand, the empiricist view (start-
ing with Hume, 1749/1999; Locke, 1690/1975) has argued for a set
of perceptual primitives (e.g., motion detection, color perception,

XU

etc.), and the traditional Piagetian view and its contemporary
incarnations (e.g., Elman et al., 1996) have focused on sensorimo-
tor primitives—the infant does not have what we think of as
representations because whatever these primitives are, they are
transient and the infant cannot distinguish her own bodily move-
ments from representations of the external world. Many research-
ers have argued against this view, and the evidence they have
presented is, in my view, quite compelling (see Carey, 2009 for a
comprehensive review). Research from the last few decades indi-
cates that infants’ cognitive capacity far exceeds what Piaget had
granted them, and very young infants’ representations of the world
persist through time and space (e.g., Baillargeon, Spelke, & Was-
serman, 1985; Gelman & Baillargeon, 1983 for a review).

Against this background, a strong nativist view emerged,
arguing that infants have a set of “core knowledge” systems at
the beginning (Carey, 2009; Carey & Spelke, 1996; Spelke,
1994; Spelke et al., 1992). Here are some prime candidates:
object, number, agency, space, and causality. The claim is that
infants begin life with these systems of knowledge—designated
input analyzers that pick up the relevant entities in the world
(e.g., objects, sets, persons, spatial layouts) and a set of prin-
ciples that guides reasoning about these entities (e.g., object
motion, how to perform addition and subtraction, predicting a
person’s desires and intentions, reorientation). These represen-
tations are evolutionarily old, and human infants share them
with many nonhuman animals.

But are these representations bona fide innate concepts? Criti-
cally, how can we tell? Various criteria have been proposed to
distinguish between perceptual and conceptual representations.
Here I suggest a strong test: Are these early representations in a
format that is language-like; that is, are these representations part
of a language of thought (Fodor, 1975)? The main argument for
this strong criterion is that most of us agree that concepts are the
mental representations that underlie language use. Adopting this
criterion gives us a stringent and principled way of distinguish-
ing concepts from perceptual representations. Note that endorsing
this criterion does not entail that nonhuman animals cannot have
concepts; they can have them without language, if their concepts
are in the right representational format. Thus the question becomes
one of whether the early representations have the right sort of
format such that they would support language learning in a
straightforward way later on. I suggest the answer is no. Early
representations are computationally and inferentially rich (see ev-
idence reviewed below) but they do not meet the high bar I have
set here: They are not in the format of a language of thought. In
order to distinguish this view from both the strong empiricist view
and the strong nativist view, I will call these early representations
proto-conceptual primitives. Three main reasons motivate this
characterization: (a) Not only do these representations support rich
inferences, they support the same inferences throughout develop-
ment. This is the continuity part. (b) These representations are
qualitatively different from later developing representations in
their format and whether they support language learning. This is
the discontinuity part. (c) These representations cut across the
traditional perceptual-conceptual divide, hence the term proto-
conceptual. Let’s take a look at each of the candidate core concepts
in turn.
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Object

An extensive body of work has revealed a great deal about how
infants represent midsized, manipulate-able objects; the signifi-
cance of the study of the object concept was partly due to the
radical claims Piaget had made about how infants lack object
permanence therefore mental representations of objects (and there-
fore mental representations of the world in general). Starting with
the seminal work of Baillargeon, Spelke, and Wasserman (1985)
and Kellman and Spelke (1983), many studies have shown that
infants as young as 4 or 5 months represent objects that are
occluded and therefore are not in their visual field directly (see
reviews by Baillargeon, 2004, 2008; Spelke, 1990, 1994, among
others). These studies initiated the modern study of infant cogni-
tion, and opened the floodgate for a myriad of experiments over-
turning Piaget’s characterization of what a human infant’s concep-
tual repertoire is like at the beginning of life. Baillargeon et al.
(1985) showed that using the violation-of-expectation looking time
methods, 4- and 5-month-old infants understand that when an
object is hidden, it continues to exist (the well-known drawbridge
experiments, Baillargeon, 1987; Baillargeon et al., 1985). Spelke
et al. (1992) laid out a set of principles of how infants reason about
objects and object motion: cohesion, continuity, solidity, and con-
tact. Cohesion states that objects move as wholes; they do not
spontaneously break into multiple objects or coalescence into a
single object. Continuity states that objects move on continuous
paths; they cannot move from Point A to point B without travers-
ing a connected path in between. Solidity states that objects cannot
occupy the same space at the same time. Contact states that no
action at a distance; an object can only act on another object by
coming into contact with it. These are beliefs that adults also hold
about object motion. Here is how a typical experiment on solidity
is conducted using the violation-of-expectation method (Spelke et
al., 1992): The infant sat in a high chair facing a small stage. The
experimenter was hidden behind the stage, invisible to the infant
except for her hand. During habituation, a ball was dropped behind
an occluder, then the occluder was removed to show that the ball
rested on the floor of the stage. On the test trials, a solid wooden
board was placed above the stage floor. The ball was again
dropped behind the occluder. When the occluder was removed, the
ball either sat on top of the solid barrier (the expected outcome) or
on the floor of the stage, below the solid barrier (the unexpected
outcome). Four-month-old infants looked reliably longer at the
unexpected outcome than the expected outcome. These and other
control experiments (e.g., there was a big hole in the solid barrier
so the ball could go through) showed that the longer looking times
were most likely due to the infants witnessing a highly unusual
event—that of a solid object (the ball)—having gone through
another solid object (the barrier).

Another extensive body of research by Baillargeon et al. (1985)
has discovered that in order to reason about how objects interact
with each other, infants divide the world into event categories:
occlusion, support, covering, and so forth (see Baillargeon, 2008
for review). For each event category, infants gradually add rele-
vant variables to fine-tune their understanding (e.g., If a tall object
were lowered behind a short object, would it be completely oc-
cluded? If an object were pushed off of a platform, and its bottom
surface continued to overlap slightly with the supporting surface,
would it fall to the ground?). Presumably observations in real life

and infants’ own experiences with manipulating objects later in the
first year and beyond gradually allow infants to add the variables
of interest for thinking about each event category. The infant’s
hard won knowledge about objects continues to serve us well as
adults.

So where is the discontinuity? Two lines of research point to
significant developmental continuities. Several studies have un-
covered a surprising failure in older children: When given a task
that a 4-month-old infant appears to be able to solve in a looking
time version, much older children fail in a comparable search
version. Keen, Hood, and their colleagues (Hood, Carey, &
Prasada, 2000, 2003; Keen, 2003) adapted the infant solidity
experiment in the following simple way: Instead of measuring
looking time, 2 1/2-year-old toddlers were asked to find the ball.
The apparatus was modified to allow this option. Surprisingly,
toddlers searched 50% of the time above the barrier and 50% of
the time below the barrier, suggesting that they did not understand
that the ball should have been blocked by the solid barrier and
therefore should be sitting on top of it as opposed to below it. The
children’s failure in these search tasks prompted researchers to
argue that perhaps the representations revealed by infant looking-
time experiments were implicit and relatively weak, such that they
did not support prediction and action (e.g., Munakata, McClelland,
Johnson, & Siegler, 1997).

A second line of work focused on whether infants reason about
objects in terms of sortal-kinds (Carey, 2009; Xu, 1997, 2007).
The term sortal is borrowed from the study of formal semantics
and metaphysics in philosophy. Philosophers have argued that
certain concepts, in particular those that underpin our use of count
nouns (in languages that make the count/mass distinction), provide
criteria for individuation and identity. For example, the sortal dog
tells us what counts as one dog as opposed to two or three dogs,
and it tells us whether we have seen the same dog yesterday, today,
and tomorrow. In contrast, a nonsortal such as water or blue does
not provide principles of individuation and identity (see Gupta,
1980; Hirsch, Huberman, & Scalapino, 1982; and Wiggins, 1980
for discussion). This line of philosophical inquiry has inspired
much research in cognitive development. A number of studies
have focused on whether infants have any criteria for individuation
and identity. For example, Xu and Carey (1996) asked whether
10-month-old infants used spatiotemporal or object-kind informa-
tion for establishing distinct objects in a scene. In one study,
infants were shown an occluder on the stage. An object, say a toy
duck, appeared from behind the occluder then returned. Next
another object, say a ball, appeared from behind the occluder then
returned. Critically the infant only saw one object at a time. For
adults, our intuition is clear: There are at least two objects behind
the occluder, a duck and a ball. What about infants? When the
occluder was removed, infants were shown either two objects, the
duck and the ball (the expected outcome) or one object, either
the duck or the ball (the unexpected outcome). Twelve-month-old
infants looked reliably longer at the unexpected outcome than the
expected outcome (like adults), whereas 10-month-old infants did
not (but see Bonatti, Frot, Zangl, & Mehler, 2002; Futé6 et al.,
2010; and Surian & Caldi, 2010 for earlier success using stimuli
that crosses ontological categories such as human vs. nonhuman,
or using communicative intent and causal function). An informal
survey using a parental checklist found that infants whose parents
said they understood at least some of the words that labeled the
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objects in the experiment— duck, ball, and so forth—succeeded in
this task but those who reportedly did not understand the words for
these objects failed (Xu & Carey, 1996). Further studies suggest a
more nuanced view on object individuation (see Xu, 2007, for a
review): Infants are able to use property information (e.g., red vs.
green) to establish representations of distinct objects (e.g., Wilcox,
1999; Wilcox & Baillargeon, 1998a, 1998b; Xu & Baker, 2005;
Xu, Carey, & Welch, 1999) but not sortal-kind information until
the end of the first year (Xu & Carey, 2000; Xu, Carey, & Quint,
2004). For these studies, interestingly, the search methods con-
verged well with looking-time methods (Van de Walle, Carey, &
Prevor, 2000; Xu & Baker, 2005).

Despite impressive demonstrations of infant object knowledge,
this initial concept of object does not appear to be in the format of
a language of thought: it does not support the learning of count
nouns such as dog or ball. And there is some evidence suggesting
that these representations are not accessible or strong enough to
support prediction and action. Instead of calling it the object
concept, which entails that the concept can support language
learning, it is perhaps more appropriate to call it the object sense
(see next section on the number sense).

Number

Developmental psychologists have investigated the origin of the
concept of number for decades. This is an important line of inquiry
in part because number is an abstract concept that cannot be
directly perceived, which raises the question of whether preverbal
human infants can represent abstract concepts, and in part because
there is a rich literature on how various nonhuman animals repre-
sent number and quantity (see Dehaene, 1997/2011; Gallistel,
1990, for reviews). The last 20 years of research has shown,
compellingly, that much like many other nonhuman animals, pre-
verbal human infants represent number when other variables such
as area, perimeter, density, and so forth are controlled for. These
numerical representations are approximate, and they obey Weber’s
Law—the discriminability of two numerosities is dictated by the
ratio of the two quantities, not the absolute difference. Infants can
perceive number in multiple modalities, for example, visual or
auditory, and the precision of this approximation increases rapidly
during the first year of life (see Feigenson, Dehaene, & Spelke,
2004 for review; Brannon, 2002; Lipton & Spelke, 2003; Wood &
Spelke, 2005; Xu, 2003; Xu & Arriaga, 2007; Xu & Spelke, 2000).
The consensus of the field is that human infants share the same
number sense with many other animals (Dehaene, 1997/2011).
One recent study showed that even newborn infants are able to
discriminate between dot-arrays of six versus 18 elements (Izard,
Sann, Spelke, & Streri, 2009). Furthermore, infants are able to
perform nonsymbolic approximate addition and subtraction on
these arrays (McCrink & Wynn, 2004), and preschoolers can even
perform nonsymbolic approximate multiplication and division
(McCrink & Spelke, 2010, 2016). Thus, rich computations are
supported by these analog, approximate representations of number.

The number sense is alive and well in adults, and although the
precision of the system changes over time, the signature properties
of the system remain the same throughout development. This is the
continuity part.

Where is the discontinuity then? The number sense supports rich
computations, that is, approximate arithmetic, and it is abstract—

independent of modalities and perceptual variables that often co-
vary with number (e.g., area). Yet as many have argued, the
number sense is not a number concept (Carey, 2009; Spelke,
2017). The methodology adopted to make this argument echoes
what we have discussed in the case of the object concept/sense:
Are these numerical representations in the format of a language of
thought such that they can support the learning of number words,
that is, positive integers such as one, two, three, four, five, and so
forth? The answer is clearly “no.” Number words appear as an
ordered list, and each number represents an exact cardinality, that
is, seven means seven, not approximately seven. The successor
function NJ- = Nj_] + 1 makes it clear that the difference between
any two numbers on the count list is exactly one, no more and no
less. There is also no upper bound to the number list, since we can
always add one once we understand the successor function. In
contrast, the number sense representations are approximate and
imprecise; they follow a psychophysical function that says that the
difference between eight and 16 is the same that between 16 and
32; there may be an upper bound on how large of a number the
system can represent.

These theoretical and empirical considerations inspired a decade
long investigation on how the number sense differs from true
number concepts, and how children acquire the concept of positive
integer and the meaning of number words. To date, the proposals
under consideration often posit that verbal counting plays a sig-
nificant role in this process, and general properties of language
(e.g., being symbolic and systematic) help the child build new
representations that are genuine number concepts. There is much
ongoing debate on how to think about number processing as part
of a general magnitude processing system (see Henik, Gliksman,
Kallai, & Leibovich, 2017 for a synthesis).

Agency

The infant’s world is not only populated by objects they can
interact with, but also people that they interact with in a radically
different way. A number of research programs has focused on two
issues in the development of intentionality and early theory of
mind: (a) How do infants identify agents? (b) What do infants
endow these agents with in terms of their mental content? Bail-
largeon, Scott, and Bian (2016) provides a recent review of this
literature. The identification of agents relies on not only facial
morphology, but also contingent behavior and goal-directed action
(e.g., Johnson, Slaughter, & Carey, 1998; Woodward, 1998;
among many others). The infant’s understanding of an agent is
abstract—an agent does not have to look like a person (with a face,
eyes, etc.) and it supports rich inferences—if something exhibits
goal-directed behavior or if it interacts contingently with the
environment, even a blob can be an intentional agent. Adults
continue to employ this notion of agency, demonstrating develop-
mental continuity for an abstract sense of agent, agency sense.

What is more controversial and currently debated is the mental
content of an infant’s representation of an agent. Does she have
intentions and desires? Does she have beliefs? Some have sug-
gested that the initial understanding of intentions is based on
teleological reasoning (Gergely & Csibra, 2003; Gergely & Jacob,
2012; Gergely & Watson, 1999). The infants use their understand-
ing of goals and their understanding of environmental constraints
to reason through a situation, and decide what would be the best,
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most efficient course of action (see Gergely & Csibra, 2003 for an
empirical demonstration of this view in 12-month-old infants).
More recently, some have suggested that infants as young as 1 year
may already have a much more sophisticated understanding of
agency in terms of true beliefs and false beliefs.

Onishi and Baillargeon’s (2005) seminal article ignited this
debate. Using the violation-of-expectancy looking time method,
they found that 15-month-old infants were able to compute the
consequences of an agent holding a true belief or a false belief.
Subsequent studies have extended these results to 7- and 12-
month-old infants (Kovéacs, Téglds, & Endress, 2010). These data
present a sharp contrast with the findings of many studies with
preschoolers that demonstrated a reliable shift on belief under-
standing between 3 and 4 years (Wellman, 2014; Wellman, Cross,
& Watson, 2001, meta-analysis??, Wimmer & Perner, 1983). With
what is known as the Sally-Anne task and many variants of it,
verbal false belief tasks have shown over and over again, that
across labs, languages, and cultures, it is not until about 4 years of
age that children can make correct predictions about an agent’s
actions. One possibility is that the infant studies reveal some kind
of implicit understanding of belief and false belief, and there may
be a change in the format of children’s representations that support
the more language-dependent, more explicit version of the Sally-
Anne task. Setoh, Scott, and Baillargeon (2016) present evidence
that with lower processing demand, even 2.5-year-olds may suc-
ceed on a verbal version of the Sally-Anne task, but see Rubio-
Fernandez et al. (2016) for a critique of these studies—they argue
that the training provided to children in Setoh et al. (2016) may
have led to correct responses without an understanding of false
belief. The empirical results are at present mixed and controver-
sial. The agent sense may be another case where both significant
continuities and discontinuities exist, and furthermore, the initial
representations are abstract and they support rich inferences but
language may play a critical role in its further development during
the preschool years.

Space

A fourth candidate of initial core knowledge system is space, or
geometry. Given the long research tradition on animals’ navigation
abilities (Gallistel, 1990 for a review), it is natural to ask what the
developmental origins are in humans. Has evolution endowed
young human learners with navigational tools for surviving in the
wild? Do young children use the geometric shape of an environ-
ment for orientation and navigation? Do they also use features or
landmarks to do so?

Hermer and Spelke (1994) used a classic orientation task, and
found that toddlers only used geometry for reorientation. In their
study, 18- to 24-month-old toddlers were shown a rectangular
room, and a toy was hidden in one of the four corners. After the
toddler was spun around a few times and disoriented, she was
asked to find the toy. Note that without any distinct features, it is
impossible to identify the correct location where the toy is hidden.
This is because two of the four corners are geometrically equiva-
lent—they both have a short wall on the left and a long wall on the
right; the other two corners are also geometrically equivalent for
the same reason. The results showed clearly that most toddlers
searched for the toy in the two geometrically equivalent corners,
and they did so equally between the two corners. In other words,

when the layout of the environment is ambiguous and the best cue
is geometry, toddlers use it for reorientation, just like rats and other
animals. In the next study, one of the walls was painted blue, thus
providing a strong cue that would allow any adult to identify one
of the four corners as the correct search location for the hidden toy.
Interestingly, toddlers did not use the color of the wall to help
them; they continued to search in the two geometrically equivalent
corners. Many studies have been conducted since to further probe
the characteristics of early geometric/spatial knowledge. Spelke et
al. (2010) provides a succinct review of this literature. She argues
that these representations—in young human learners and nonhu-
man animals—are geometric and abstract, because they capture the
shape of the environment regardless of surface markings, preserve
information on Euclidean distance and left-right direction, and
support inferences about the orientation of the self and the loca-
tions of objects and places. Furthermore, this system of represen-
tations continues to function in human adults, therefore it is de-
velopmentally continuous.

The discontinuity comes from several sources. The most rele-
vant for our discussion is the children’s failure to use featural
information or landmarks for reorientation. Later studies suggest
that children begin to use the color of the wall when they start to
learn propositions such as “left” and “right” (Hermer-Vazquez et
al., 2001), and adults, in a verbal-shadowing task that tied up
verbal working memory, perform similarly to toddlers in a reori-
entation task (Hermer-Vazquez et al., 1999). These data support
the idea that language may play an important role in building
geometric representations that conjoin geometry and featural in-
formation.

However, as Cheng and Newcombe (2005) point out, rats can be
trained to use featural cues in a circular or square room, so
language is not necessary for reorientation with landmarks (Cheng,
1986). Furthermore, human toddlers use the color of the wall for
reorientation when they are in a large, but not a small rectangular
room. Still, in all developmental studies, the use of featural infor-
mation, in addition to geometry, increases with age.

For the purpose of the present discussion, it appears that early
geometric representations are abstract, as reviewed above, and
animal and human learners may primarily rely on the shape of the
environment for reorientation and navigation. However, the sys-
tem is not informationally encapsulated in the strong sense of
Fodorian modules (Fodor, 1983). The current state of affairs leaves
open the possibility that language and symbol learning may change
the format of the early representations in significant ways. The
evidence to date provides some support for the idea of a space
sense that is both developmentally continuous and discontinuous,
but it falls short of being a full-fledged concept of space/geometry.

Causality

The last candidate early concept I will consider is causality. An
extensive body of research has investigated Michottian causality in
adults and infants. This is what we may think of as the canonical
understanding of causal interaction: a ball launches and it hits
another ball, then the second ball moves. This is the basis of
contact causality, a construal that adults continue to hold (Mi-
chotte, 1946/1963). A number of infant studies have asked the
question: How do infants think about causality, if they have any
notion of cause and effect at all? Leslie and Keeble (1987) pio-
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neered the study of causal understanding in preverbal infants. In
their study, 6-month-old infants were habituated to a short film in
which one rectangle moved toward a second rectangle. The first
rectangle either stopped when it comes into contact with the
second rectangle, or it stopped short of coming into contact with
the second rectangle. Then the second rectangle was launched. On
the test trials, both the contact and no-contact films were played in
reverse, thus everything else remained the same except that if a
causal interaction were perceived (as adults do in the contact
scenario), the role of agent and patient (hitter vs. hittee) had also
been reversed. Results showed that infants dishabituated more in
the case of the reversal of the contact event, suggesting that only
the contact event had been perceived as causal, and when the agent
and patient reversed their roles, the test event was perceived as
more unexpected. Subsequent studies using similar methods find
similar results, though in older, 10-month-old infants (Cohen &
Oakes, 1993). Recent studies have probed more subtle aspects of
adults’ causal perception, and demonstrated that infants are also
sensitive to these parameters (for some elegant examples, see
Kominsky et al., 2017; Muentener & Carey, 2010; Newman, Choi,
Wynn, & Scholl, 2008).

Michottian causality is a strong case for an informationally
encapsulated module—one can induce the perception of causality
with two moving circles on a wall, produced by shining two
flashlights, and this perception does not diminish even though
adults clearly understand that these circles are not material phys-
ical objects. It is developmentally continuous given that we find
evidence for Michottian causality in infants and adults.

This early developing sense of causality (the causal sense) may
be contrasted with the modern interventionist view of causality
(e.g., Danks, 2014; Gopnik et al., 2004; Woodward, 2003). This
view of causality suggests that learners track the conditional prob-
abilities of events and use these computations to infer causal
relationships. Moreover, the critical criterion is difference making:
Learners are granted an understanding of causality when they are
able to produce effective interventions, for example, if [ intervened
on Node A of the causal graph, then Effect B would not occur any
more. Several studies with young children suggest that producing
effective interventions may require causal language (Bonawitz et
al., 2010; Muentener, Bonawitz, Horowitz, & Schulz, 2012).

Causality also poses a different challenge from our previous
discussions about object, number, agency, and space. Each of these
four core knowledge systems focuses on a particular content
domain. Causality, however, is central for each system but mani-
fests itself differently. For infants, the evidence for Michottian
physical causality is strong; in contrast, understanding intentional
causality seems to require different considerations. For example,
Muentener and Carey (2010) found that 8-month-old infants con-
strued state change (e.g., a box being crushed into pieces) as causal
only when an intentional agent was involved. They suggest that
there may be two developmental pathways for early causal under-
standing—Michottian physical causality and effective intentional
action. It may be the case that causality is best understood as a
domain-specific construct early on, then the interventionist view
may be acquired via language so that eventually all causal under-
standing includes components of tracking conditional probability,
prediction, and intervention (e.g., Bonawitz et al., 2010).

Further support for the idea that these early representations may
sit comfortably at the perceptual-conceptual interface, hence the

term proto-conceptual primitives, comes from a body of work on
perception and visual cognition. Scholl and his colleagues have
demonstrated, convincingly in my view, that many of the core
knowledge system signatures are represented in the perceptual
system. For example, in a series of experiments with adults, Chen
and Scholl (2016) probed whether perception of causal history
may induce illusory motion perception. Participants watched a
square change into a truncated form, with a piece of it missing.
When the contours of the missing piece suggest a history of
intrusion (akin to poking a finger into clay), participants reported
seeing gradual change even when it was actually abrupt. In other
words, visual perception involves reconstructing causal history
from static shapes. Thus a high-level concept such as causality is
seamlessly integrated into automatic, rapid visual perception. A
second example investigates whether cohesion violations (part of
core knowledge of object, see previous section on object) disrupt
multiple object tracking, a standard task for studying object per-
ception. Scholl, Pylyshyn, and Feldman (2001) asked participants
to track several objects in a field of identical distractors. When a
target object and a distractor are “merged” (e.g., being connected
by a line between them), participants’ ability to track the object
was disrupted and performance dropped significantly. Similarly,
found that participants can track objects as coherent units in a
multiple object tracking task, but they had great difficulties track-
ing piles of substances that are “poured” from location to location.
Thus, a cohesion violation (e.g., in tracking piles of sand in real
life) disrupts tracking of objects in midlevel vision. A third finding
reinforces this conclusion. Mitroff, Scholl, and Wynn (2004) found
that when an object splits into two (a cohesion violation), object
tracking and the benefits of preview object files are interrupted,
incurring significant cost in performance. Taken together, these
findings strongly support the idea that many aspects of the core
knowledge systems are represented in our midlevel visual percep-
tion system (see also Carey & Xu, 2001; Leslie, Xu, Tremoulet, &
Scholl, 1998; Xu, 1999 for similar proposals).

Why Are These Early Representations Proto-Concepts
and Not in the Format of a Language of Thought?

From the evidence reviewed above, it appears that these early
representations are domain-specific and inferentially rich (Carey,
2009; Spelke, 1994). At the same time, these representations are
“fragile” in multiple ways. These representations may be largely
automatic and informationally encapsulated (though not as strictly
as Fodor suggests); these representations may be implicit and not
robust enough to support prediction and action; these representa-
tions may not be in the right format to support language learning;
and these representations appear to be subject to some of the same
constraints on midlevel perceptual/attentional systems.

I have suggested for a rather stringent criterion for concepts, that
the representations under discussion should be in the format of a
language of thought such that they can support language learning,
be it words or other aspects of language. Furthermore, a language
of thought—perhaps a natural language—is needed for formulat-
ing beliefs in our intuitive theories, and for going beyond percep-
tual/iconic representations. I make two further points in this sec-
tion, and I hope this will be the beginning of a more extensive
discussion of these issues for all students of cognitive develop-
ment.
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First, in contrast to the criterion for concept-hood I suggest
above, the extant literature offers two other criteria for concepts:
One is to examine whether these representations are central and
amodal (Spelke et al., 1992), and the other is to examine whether
these representations support rich inferences (Carey, 2009).

Spelke’s proposal was put forth against the background of the
traditional Piagetian view, that early representations are sensori-
motor representations. She argued convincingly that the initial
construal of object is not sensorimotor, and it is amodal given
evidence of visual and haptic matching experiments (Streri &
Spelke, 1988). Our discussion of early numerical understanding
reinforces this point: Young infants are able to compute approxi-
mate numerosities in visual and auditory modalities. Yet our
discussion on both object and number above suggest that this
criterion may be too weak.

Carey’s proposal was put forth with a general theory of concepts
in mind, that concepts are defined by their inferential role in a
system of interconnected concepts and beliefs (Block, 1986;
Carey, 1985, 2009). I do not doubt the importance of understand-
ing inferential role in a theory of concepts, but a key problem is
that Carey may have underestimated the inferential capacity of our
perceptual system. A myriad of examples in early vision (e.g.,
Feldman, 2012; Feldman & Singh, 2006; Knill & Pouget, 2004;
Knill & Richards, 1996; Weiss, Simoncelli, & Adelson, 2002)
suggest that the perceptual system is capable of very sophisticated
and subtle inferences. Many have suggested these inferences are
best captured with probabilistic Bayesian models, and the visual
system rationally combines prior constraints and biases with input
from the environment (See Knill & Richards, 1996, for a review).

An important caveat is in order here. I have advocated that to
examine whether certain representations are in the format of a
language of thought provides the litmus test for whether we have
a bona fide concept. This is meant to be a methodological sugges-
tion, so we can set a clear and principled criterion for concept-
hood, but it does not entail that learners cannot have concepts
without language. Nonhuman animals can, in principle, acquire the
later, more mature versions of these early concepts via other
nonlinguistic mechanisms. At the same time, I will argue that for
human learners, language and symbol learning is a crucial mech-
anism for developmental change (see section on language and
symbol learning below).

Second, we can directly ask the question “Do prelinguistic
children have a language of thought?” and test it empirically. Some
key properties of a language of thought have been laid out clearly
by Fodor and others (Fodor, 1975; Fodor & Pylyshyn, 1988):
systematicity and compositionality. A few recent studies have
begun to probe these properties empirically, and the results seem
to suggest that no, prelinguistic infants and toddlers do not have a
LOT. For example, Piantadosi, Palmeri, and Aslin (2018) and
Piantadosi and Aslin (2016) asked whether 9-month-old infants
could anticipate the outcome of two functions, that is, not just f(x)
and g(x), but also g(f(x)), a strong test of compositionality. They
taught infants that two separate “functions,” for example, if a blue
object goes behind an occluder, it comes out red (color change); if
a polka-dotted object goes behind a different occluder, it comes out
striped (pattern change). The critical question if what infants think
would happen when an object goes behind the first, then the
second occluder—do they expect two changes (color and pattern)?
The answer appears to be no. In other words, infants had failed to

compose two functions, even though control experiments showed
that they were capable of learning each function separately. An-
other line of research asks whether logical operators such as
“no”/“not” are understood as genuine operators that change the
truth-value of a proposition, since for adults, they do both in our
language of thought and in our language. Austin, Theakston,
Lieven, and Tomasello (2014) and Feiman, Mody, Sanborn, and
Carey (2017) found that it is not until 24-27 months of age that
toddlers start to use “no/not” as logical operators and make infer-
ences accordingly. Thus far, we do not yet have evidence that
representations in prelinguistic infants demonstrate key properties
of a language of thought.

In sum, this section argues for the thesis that very early repre-
sentations are neither perceptual nor conceptual, and we dub them
proto-conceptual primitives. These representations may be amodal
and they may support rich inferences; however, they fall short of
meeting the criterion of having a format that is in a language of
thought (Fodor, 1975), therefore they are not genuine concepts.

The Mature State: Domain-Specific Intuitive Theories

The mature state of cognitive development has been character-
ized by many as a set of domain-specific intuitive theories (e.g.,
intuitive physics, intuitive psychology, intuitive biology, intuitive
astronomy; Carey, 1985, 1988, 2009; Carey & Spelke, 1996;
Gopnik, 1996; Gopnik & Meltzoff, 1997; Leslie, 1994; Vosniadou
& Brewer, 1994; Wellman, 1990; Wellman & Gelman, 1992).
Wellman and Gelman (1992) call these “framework theories”—
they are “intuitive theories that carve phenomena into differing
organized systems of knowledge and belief.” These knowledge
structures are “theory-like” in important respects (Carey, 1985,
1991; Carey & Spelke, 1996; Gopnik, 1996; Gopnik & Meltzoff,
1997; Spelke, 1991). First, the content of these knowledge struc-
tures is organized in terms of a set of causal, explanatory concepts
and beliefs, much like scientific theories. The concepts are mental
tokens that gain their explanatory power by being connected via
beliefs (e.g., all living things grow and reproduce). Second, these
knowledge structures undergo two types of changes, belief revi-
sion and conceptual change, much like scientific theories. Belief
revision is common, given the accumulation of factual knowledge
(e.g., a child may not know that all insects have six legs initially
but acquire this knowledge from their parents or in school). Human
learners have well-oiled machinery for everyday belief revision
(see Bayesian Inductive Learning as a Tool for Rational Belief
Revision section below). Conceptual change occurs more gradu-
ally, partly based on cumulative belief revision and partly based on
changes in causal understanding. For example, consider the case of
intuitive biology: A child may not understand that animals and
plants are all living things initially. When animals and plants are
subsumed under the global category of “living things,” much of
her biological knowledge—breathing, growth, reproduction, and
so forth—changes as well. And when we consider the case of
intuitive physics, we see other types of conceptual change with
far-reaching consequences. For instance, preschoolers have undif-
ferentiated concepts of weight and density, because of their con-
strual of size, matter, and material kind. By the time children are
8 or 9 year of age, they split the concept weight/density into two
distinct concepts, and work out the relation between the two, all
through laborious thinking and reasoning (Smith, Carey, & Wiser,
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1985). Scientific theories evolve and change in similar ways.
Furthermore, there is some developmental evidence supporting the
contention that belief revision and conceptual change are indeed
distinct processes; a learner may accumulate many biological facts
without understanding the underlying the causal explanatory
mechanisms (Johnson & Carey, 1998).

For intuitive physics, infants begin with the principles of rea-
soning that Spelke and her colleagues have laid out clearly (e.g.,
Spelke, 1994; Spelke et al., 1992). Later on, children develop a
theory of matter that includes core concepts such as mass, weight,
density, solid and nonsolid substances, gases, and object kinds
(Smith et al., 1985).

For intuitive psychology, infants begin with the principles of
intentionality (e.g., Gergely & Csibra, 2006; Wellman, 1990) to
reason about goal-directed action (e.g., Woodward, 1998). Later
on, at least according to some researchers, children develop a
theory of mind that includes a more robust understanding of true
and false beliefs, deception, lying, and other high-level mental
constructs (e.g., Chandler, Fritz, & Hala, 1989; Gopnik & Melt-
zoff, 1997).

For intuitive biology, infants may start with a very rudimentary
and skeletal understanding of animacy based on self-generated
movement. Later on, children develop a vitalistic biology (e.g.,
Inagaki & Hatano, 2004; Slaughter, Jaakkola, & Carey, 1999;
Slaughter & Lyons, 2003) that is based on the core idea of life
force (or “qi” in Asian cultures). Some also develop a more
mechanistic understanding of bodily functions, the life cycle, and
reproduction.

As Carey and Spelke (1996) pointed out, these knowledge
structures are fundamentally different from core knowledge sys-
tems (in our terminology, proto-conceptual primitives). Core
knowledge systems identify their entities for reasoning via percep-
tual analysis, whereas the entities reasoned about in intuitive
theories are identified in much more theory-laden ways. Core
knowledge systems are shared by nonhuman animals and evolu-
tionarily old, whereas presumably the capacity for constructing
intuitive theories is uniquely human. Core knowledge systems are
response- and task-specific, whereas intuitive theories are central
reasoning systems that can be widely used to support prediction
and action. Lastly, core knowledge systems are constant through-
out development, with minor revisions and elaborations, whereas
intuitive theories are open for revisions and radical conceptual
change, so much so that children and adults’ later theories may be
incommensurable with their earlier ones.

Another important issue to consider is whether domain-specific
intuitive theories grow out of early representations, and whether
they are restricted to the domains represented by proto-conceptual
primitives or core knowledge systems. The answer seems to be no.
On the one hand, intuitive physics has at its core the concept of
object and intuitive psychology the concept of agent, but human
adults do not appear to develop an intuitive theory of navigation or
domain-general causality. As for the domain of number, human
adults continue to use the number sense in a variety of ways, and
we learn to do arithmetic and in some cases high-level mathemat-
ics, but it is unclear whether we have a theory of number. In
contrast, some have argued that learners form intuitive theories of
new domains such as intuitive chemistry (e.g., Au, 1994), intuitive
astronomy (e.g., Vosniadou & Brewer, 1994), and intuitive theory
of morality (e.g., Rhodes & Wellman, 2017). The key point here is

that intuitive theories are not continuous with proto-conceptual
primitives, neither in format nor in content.

This discussion naturally raises the question about mechanisms:
What are the mechanisms of learning that drive the construction of
intuitive theories, if human infants begin with a set of proto-
conceptual primitives?

Mechanisms of Learning, Development, and
Conceptual Change

I have argued that human infants begin life with a set of
proto-conceptual primitives and by middle childhood, they have
developed a set of domain-specific intuitive theories. These proto-
conceptual primitives straddle the perceptual-conceptual bound-
ary, and they are not in the format of a language of thought; the
later-developing intuitive theories are genuinely conceptual repre-
sentations and they are expressed by propositions in language. If
our characterization of the initial state and the final state is on the
right track, then we need mechanisms for three types of changes.
First, mechanisms that transform the proto-conceptual primitives
into a format that is conducive for language learning and reasoning
by propositions (i.e., a language of thought). Second, mechanisms
for belief revision since intuitive theories are consisted of a set of
concepts and beliefs, and our beliefs change in the face of evi-
dence. Third, mechanisms for genuine conceptual change—even
our core concepts and core beliefs embedded in intuitive theories
may be radically revised, and we may undergo theory change that
includes the possibility of incommensurability (e.g., Carey, 1985;
Gopnik & Meltzoff, 1997).

Language and Symbol Learning as a Medium for
Changing the Format of Early Representations

Language learning starts in utero. Newborn infants show a
preference for human speech over other auditory stimuli (e.g.,
Vouloumanos, Hauser, Werker, & Martin, 2010), and they already
prefer their native language (or any other language that is in the
same rhythmic class as their native tongue) over a non-native
language. Speech perception develops rapidly during the first year
of life (e.g., Werker & Hensch, 2015; Werker & Tees, 1984), and
word segmentation and word learning begin in earnest from about
6 months on (e.g., Aslin, Saffran, & Newport, 1998; Saffran,
Aslin, & Newport, 1996). Toddlers and preschoolers can use
syntactic cues to narrow down noun and verb meanings (e.g.,
Berko, 1958; they begin to understand absent reference as early as
12 months and they use language—in the form of testimony—for
learning many aspects of domain-specific knowledge from very
early on (Koenig & Harris, 2007). Language is the first symbolic
system that children acquire, but it is not the only one. Many
children are exposed to Arabic numerals, maps, and other sym-
bolic forms quite early. Does language and symbol learning
change initial proto-conceptual primitives into representations in
the format of a language of thought, such that further learning and
reasoning is carried out in words, symbols, and propositions? In
this section I put forth a working hypothesis that learning a natural
language serves as the medium of building LOT-like, genuinely
conceptual, representations.

Language and the object sense. Research from the last de-
cade shows that as early as 3 to 6 months, infants can use the
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presence of a count noun label to facilitate the formation of an
object category (see Perszyk & Waxman, 2018 for review); by 9
months, they use words but not tones in forming categories; by 14
months, they use count nouns to form superordinate categories
(whose members do not share many perceptual features) and
adjectives for identifying attributes or properties of objects (e.g.,
spotted). Also during the first year of life, words begin to facilitate
infants’ individuation of distinct sortal-kinds (Dewar & Xu, 2009;
Xu, 2002; Xu & Carey, 1996; Xu, Cote, & Baker, 2005), but not
properties such as color (Xu et al., 2004)." Furthermore, the
presence of a count noun helps 10- to 13-month-old infants make
inductive inferences about nonobvious object properties, even
when the objects are perceptually identical (Baldwin & Markman,
1989; Dewar & Xu, 2009; Welder & Graham, 2006). These three
lines of research provide converging evidence that within the first
year of life, infants already make good use of the ambient language
around them to build a better conceptual and representational
structure of the world. Language helps infants group objects into
categories that do not share many perceptual features; language
helps infants distinguish between distinct object categories and
kinds; language licenses inductive inferences of nonobvious object
properties even when there is little perceptual overlap across a set
of exemplars (a version of psychological essentialism, Gelman,
2003). As early as 3 months, words are referential symbols that go
beyond perceptual similarities and infants use them to form beliefs
about not just individual objects but whole categories of objects
(see Sloutsky, 2009 for a different view of the role of words and
concepts, and Waxman & Gelman, 2009, for a rebuttal).
Language and the number sense. Several proposals are in
the literature on how children acquire the meaning of numbers
words such as one, two, three, four, five, and so forth. Each of
them puts a heavy emphasis on language learning, either the
counting routine or the noun phrases children learn. One view
suggests that children begin by memorizing the counting list,
simply repeating by rote the words one, two, three, and so forth
without knowing the semantics of these words (this is a well-
established empirical finding, e.g., Le Corre & Carey, 2007; Sar-
necka, Kamenskaya, Yamana, Ogura, & Yudovina, 2007; Wynn,
1990, 1992). Toddlers learn the distinction between singular and
plural marking in a language like English, which corresponds to
the distinction between one object and more than one object. This
provides the basis for understanding that all number words refer to
quantities. The child works through the counting list slowly, first
learning the meaning of “one” as referring to one object, then
“two” as referring to two objects, then “three” as referring to three
objects. Occasionally a child may continue to “four” in this man-
ner. The meaning of these number words is grounded in the
parallel individual system (or object files, Kahneman, Treisman, &
Gibbs, 1992; Scholl & Pylyshyn, 1999). But the learner only has
three object files, so when she encounters the number word “four,”
more conceptual work is needed. The idea is that the child now
makes an inductive leap—she notices that from one to two to three,
each time she adds one object file to create the corresponding
nonlinguistic representation of the corresponding set. By analogy,
when it comes to four or five or six, she will add one (imaginary
object file) in order to represent the cardinality of the set (Carey,
2009, 2014; Le Corre & Carey, 2007; Sarnecka et al., 2008; Wynn,
1992). This proposal relies on the idea that the child assumes a
counting list that consists of number words all have the same kind

of meaning, so the successor function of “adding one” will have
the inductive force needed. A second proposal suggests that this
inductive learning process goes more slowly, and relies on yet
another aspect of language learning, namely learning the meaning
of noun phrases such as “three tigers” or “four flowers” (Spelke,
2017). This proposal is motivated in part by the empirical finding
that in a training study, children learned the meaning of the number
word “three” in the context of a picture showing three tigers, but
they did not generalize the meaning of three to other pictures
showing three flowers or three bricks. The alternative view sug-
gested is that children acquire partial meaning of number words by
embedding them within noun phrases. Gradually, a second induc-
tive process takes places and children generalize the meaning of
“three” to all instances in which the cardinality of the set is exactly
three. Further support for the idea that language plays a critical role
in representing large, exact numbers comes from a study with
adults (Spelke & Tsivkin, 2001), in which bilingual speakers were
more effective in retrieving information in the language of train-
ing, with exact numbers but not with approximate numbers.
Both of the proposals discussed above argue for a critical role
for language learning, whether it is the counting list or the meaning
of noun phrases. It may be the case that learning the counting list
provides an external tool for making the analogy between object
files and number words. However, there is also a stronger possi-
bility: That it is language (learning the meaning of number words,
more specifically) that fundamentally changes how young human
learners represent number. Infants only have the fuzzy, approxi-
mate numerical representations; these representations obey We-
ber’s Law such that the difference between eight and 16 is larger
than the difference between 108 and 116. It is via language
learning that children come to represent numbers as discrete,
symbolic, abstract entities that are governed by a formal recursive
rule: The successor function that dictates that “add 1” captures the
relationship between any two successive number words on the list,
and the difference between eight and 16, and 108 and 116, is
exactly the same, eight. That is, the counting list provides a crucial
medium for the change in representational format, and this leap is
the beginning of a mathematical ability that is beyond the reach of
nonhuman animals, individual home sign users, and nonindustri-
alized traditional societies (e.g., Gordon, 2004; Jara-Ettinger, Pi-

! Bonatti et al. (2002) and Surian and Caldi (2010) presented evidence
that before 12 months, infants may already represent human or person as
a sortal concept. They found that when given an agent versus non-agent
contrast, 10-month-old infants were able to use that difference to establish
a representation of two objects under occlusion, and when given two
agents, infants were not able to do so. These findings provide an exact
parallel to the Xu et al. (2004) findings with inanimate objects. Now let’s
consider how these representations support the learning of count nouns, the
linguistic counterpart to sortal concepts. For sortals such as ball and truck,
the story is straightforward. We suggest that at 9 months, infants use the
words “ball” and “truck” to help them build representations of sortals, and
by 12 months, they have these representations of sortals, but not properties
(red ball vs. blue ball). For agents, the story is interestingly puzzling. The
Bonatti and Surian studies suggest an early representation of the sortal
person, but not Joe versus Mary (two distinct agents/individuals), but when
we look at infants’ early lexicon, proper nouns that refer to unique
individuals are among the first they acquire, Mama and Dada, Max (the
family dog), and it is a long while before children learn the word person.
This raises interesting questions about how to relate pre-linguistic repre-
sentations and early word learning.
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antadosi, Spelke, Levy, & Gibson, 2017; Saxe, 2015; Spaepen,
Coppola, Spelke, Carey, & Goldin-Meadow, 2011;).

Language and the agent sense. It is clear from the previous
discussion on early understanding of agency and mental states that
right now there is no consensus in the field on how to characterize
the 1-year-old’s theory of mind, and whether there is genuine
theory change at around 4 years of age. One possibility is that the
looking time tasks reveal an implicit understanding of belief early
on (Kovécs et al., 2010; Onishi & Baillargeon, 2005), but to
succeed at the verbal version of the classic false belief task, a
stronger and more explicit representation is needed (Wellman,
2014). This understanding may come about with using proposi-
tions to represent beliefs, and reason logically through a set of
premises in order to draw the correct conclusions. de Villiers and
colleagues, in a provocative study, found that deaf children with
hearing parents were delayed in false belief and knowledge state
tasks, whereas their nonlanguage-delayed counterpart, deaf chil-
dren with deaf parents were not. These findings provide some
support for the idea that language skills may be important in
developing theory of mind in preschoolers, and de Villiers and
colleagues argued for a bidirectional account (de Villiers, 2007;
Schick, de Villiers, de Villiers, & Hoffmeister, 2007). Other stud-
ies have also provided data supporting the idea that language is
critical in theory of mind development, in both longitudinal studies
with typically developing children as well as children with lan-
guage delay (e.g., Astington & Jenkins, 1999; Pyers & Senghas,
2009;Ruffman, Slade, & Crowe, 2002). The key findings are that
first, children’s theory of mind development is predicted by their
language development, not vice versa; and second, children with
language delay or impoverished language input are also delayed in
theory of mind development. There is no question that this is a
controversial claim (see Carruthers, 2011, 2016, and others for
discussion).

Language and the space sense. Although studies with non-
human animals provide compelling evidence that language is not
necessary for using featural information of the environment for
reorientation (Cheng, 1986; Cheng & Newcombe, 2005), the body
of research reviewed above leaves the door wide open that lan-
guage may indeed play a critical role in human learners’ develop-
ment of reorientation, navigation, and geometric understanding.

Hermer-Vazquez, Moffet, and Munkholm (2001) found that 5-
to 7-year-olds who knew the meaning of words like “left” and
“right” were better able to combine geometric and featural infor-
mation in a reorientation task. Hermer-Vazquez, Spelke, and
Katsnelson (1999) found that when adults were engaged in a
verbal-shadowing task, their reorientation relied more on geomet-
ric information at the expense of featural information, much like
toddlers. However, these findings are quite controversial (see
Cheng & Newcombe, 2005; Ratliff & Newcombe, 2008).

Language and the causal sense. The Michottian causal sense
is a strong candidate for a perceptual module—it is automatic and
encapsulated; it also continues to function in adults. What about
the interventionalist view of causality (Danks, 2014; Gopnik et al.,
2004; Gopnik & Schulz, 2004; Woodward, 2003)? As I reviewed
above, it is unclear whether causality is a domain-general primitive
(see Carey, 2009, for arguments on the affirmative side). And as
discussed earlier, causality may be best understood as a domain-
specific construct given its importance in reasoning within each
domain, be it about object or agents. The interventionist view may

be acquired via language—causal language serves as a unifying
force—such that eventually all causal understanding includes com-
ponents of tracking conditional probability, prediction, and inter-
vention. Results across several laboratories provide strong and
consistent empirical evidence that young children use causal lan-
guage to shape their causal understanding both through testimony
(e.g., Harris & Koenig, 2006) and through labeling (Gopnik,
Sobel, Schulz, & Glymour, 2001; Nazzi & Gopnik, 2001).

In sum, in each case of early representations, be they about
objects, numbers, space, agency, or causality, there appear to be
discontinuities between the initial representations of infants and
the more mature concepts held by older children and adults. In
each case, there appears to be some evidence for language and
symbol learning to play a critical role in development, although
there is also a fair amount of controversy surrounding these find-
ings and arguments. One unifying possibility, building on the
argument that early representations are not in a format of language
of thought, is that as language and symbol learning progresses,
learners acquire the ability to express all early representations in a
format that is compatible with language. That is, there is an across
the board change in representational format (Karmiloff-Smith,
1990), and these new representations are propositional, and accord
with general principles for a language of thought such as compo-
sitionality and systematicity (e.g., Fodor & Pylyshyn, 1988; Lake,
Salakhutdinov, & Tenenbaum, 2015; Pinker & Prince, 1988). This
is indeed the beginning of the construction of domain-specific
intuitive theories.

Bayesian Inductive Learning as a Tool for Rational
Belief Revision

The study of cognitive and language development has long been
integral to the study of cognitive science—perhaps unsurprising
since a big part of understanding human cognition is to understand
its origin and development, and to understand the nature of the
learning mechanisms. A significant part of this integrated approach
appeals to the use of computational models as a formal tool for
understanding learning and development. Many have employed
connectionist neural network models to capture the emergent prop-
erties of development, therefore these models have often been seen
as instantiations of certain constructivist ideas (e.g., Elman et al.,
1996; Munakata et al., 1997). The last decade or so has witnessed
a surge of probabilistic Bayesian models as a tool for understand-
ing human cognition, learning, and development. Bayesian models
are distinct from neural network models in a number of important
respects (see the exchange between McClelland et al., 2010 and
Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Lake et al.,
2015). These models are committed to symbolic representations,
but they also employ probabilistic inductive learning algorithms
that support graded and noisy inferences. That is, these models
depart from the use of subsymbolic representations in connection-
ist models, and they also depart from traditional symbolic models
in acknowledging that learning is probabilistic and noisy (Pianta-
dosi & Jacobs, 2016; Tenenbaum et al., 2011).

The Bayesian framework. The Bayesian approach to the
study of human cognition has generated much fruitful research in
the last two decades (see Chater & Oaksford, 2008; Griffiths et al.,
2010; Tenenbaum et al., 2011 for reviews). This approach has also
been championed in the study of cognitive, language, and social
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development. Perfors, Tenenbaum, Griffiths, and Xu (2011) pro-
vide a nontechnical introduction for this approach, covering the
basics of the computational and conceptual underpinnings. The
inductive learning problem in cognitive development is often
framed as follows: How do young human learners acquire so much
knowledge so fast, given the limited amounts of data and evidence
from the environment? Children are avid word learners—a child
before entering first grade (and before learning to read) has a
vocabulary of about 6,000 words (Bloom, 2002; Carey, 1982;
Markman, 1989); children are experts in inducing the rules of
grammar for their native language, in the absence of explicit
instruction (Chomsky, 1987; Pinker, 1984, 1989); children con-
struct intuitive theories during the preschool years, with little help
from adults or books on science (Carey, 1985; Wellman &
Gelman, 1992); children sometimes acquire biological knowledge
much faster than adults—some children are experts on dinosaurs
by age 4, whereas some adults only know a few dinosaur names
and facts. The Bayesian framework provides a tool for understand-
ing three key parts of inductive learning: (a) How do children
make inductive inferences from just a few examples? (b) How do
children acquire learning biases and inductive constraints from
initial input that help them acquire knowledge more efficiently
later in development? (c) How do children learn inductive frame-
works and construct intuitive theories?

The basic formal tool for Bayesian models is Bayes’ Rule,
which captures the logic of belief revision in an elegant way:

p1x) = 2Kl
P > pXIH)p(h)
h €H

To compute degrees of beliefs as probabilities depends on two
components. One is the prior probability p (h), which captures how
much we believe in Hypothesis h before observing any data. The
other is the likelihood p (X|h), which captures the probability of
observing the data X if h were true. These two components
combine to yield the posterior probability, which tells us how
probable h is the true hypothesis given the data p(h|X). The
denominator provides a normalization term, which is the sum of
the probability of each of the possible hypotheses under consider-
ation. These probabilities of all possible hypotheses add up to 1.0,
and this term accords with our intuition that if we strongly believe
in one hypothesis (it has a high posterior probability) then we are
less likely to believe in other competing hypotheses (they have low
posterior probabilities).

To illustrate with a concrete example, we will focus on the case
of learning words at different levels of a hierarchy (Xu & Tenen-
baum, 2007a). The problem at hand is that although it is well
documented that young children tend to first learn count nouns that
refer to basic-level object categories (e.g., dog, cow, carrot; Mark-
man, 1989; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976), children also face the challenge of learning the meaning of
words that refer to broader categories (superordinate-level, e.g.,
animal) as well as those that refer to narrower categories
(subordinate-level, e.g., poodle). A series of experiments with
adults and preschoolers manipulated the number of labeled exam-
ples (one vs. three) and the perceptual span of the three examples
(e.g., subordinate-level: three Dalmatians; basic-level: three dogs
of different breed; superordinate-level: three animals from differ-
ent basic-level categories, say a dog, a bird, and a fish). After being

taught the novel word, “See this? It is a zav,” participants were
then asked to generalize the novel word to other objects in the set.
The results showed that learners were sensitive to ‘“‘suspicious
coincidences.” That is, when given one Dalmatian, adult learners
generalized to the basic-level category of all dogs and child learn-
ers showed more graded generalization beyond the subordinate-
level category of Dalmatians; when given three Dalmatians, how-
ever, adult and child learners restricted their generalization to only
other Dalmatians, showing a sharper generalization function. Our
explanation is that when a set of animals (including dogs of
different breeds) and other objects are present, and the experi-
menter chose to label three Dalmatians, the learner reasoned that if
the word “zav” had meant to refer to all dogs, it would have been
a “suspicious coincidence” that first three labeled exemplars were
all Dalmatians. Therefore they inferred a narrower extension for
the novel word, and only generalized to other Dalmatians. The
Bayesian model, with a preestablished hierarchy of categories that
included subordinate-level, basic-level, and superordinate-level
categories as distinct clusters (the prior), and a way of taking into
account the number of labeled exemplars and their perceptual span
(the likelihood), captured these results well. Additional experi-
ments and modeling showed that both adult and child learners
were also sensitive to whether a knowledgeable person had labeled
the exemplars, and made their inferences accordingly (Xu &
Tenenbaum, 2007b).

Other researchers have found evidence that supports the idea
that these inductive learning mechanisms (e.g., noticing “‘suspi-
cious coincidences”) are domain general. For example, Gweon,
Tenenbaum, and Schulz (2010) found that given one blue noise-
making object, toddlers make broader generalizations than when
given three blue noise-making objects sampled out of a box of blue
and yellow objects. This study further demonstrated that the in-
tention of the person while sampling objects from a population
also constrains the inferences toddlers make. Nichols and col-
leagues (Ayars & Nichols, 2017; Nichols, Kumar, Lopez, Ayars, &
Chan, 2016) found that in the moral domain, adult participants are
sensitive to ‘“‘suspicious coincidences” in how far they would
generalize a moral rule.

The second key issue that the Bayesian framework has deepened
our understanding of is the idea of “learning to learn” or overhy-
pothesis formation (Goodman, 1955; Kemp, Perfors, & Tenen-
baum, 2007). With the technical tools of hierarchical Bayesian
models, research has shown that learners may use the initial input
to extract regularities that become learned biases that guide later
learning. A well-known example in the cognitive and language
development literature is the shape bias: Young children tend to
generalize novel count nouns to objects that share the same shape,
but not the same texture or color (Landau, Smith, & Jones, 1988;
Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002,
among others). One explanation of this phenomenon is that shape
is indicative of kind membership (Dewar & Xu, 2009; Diesend-
ruck, Markson, & Bloom, 2003). Many have suggested that the
shape bias is learned, and an elegant training study has demon-
strated that toddlers can be trained to acquire the shape bias earlier
(Smith et al., 2002). If toddlers are given evidence in the lab that
novel count nouns refer to sets of objects with distinct shapes, they
generalize this learned bias beyond the training in the lab. A
hierarchical Bayesian model captures this phenomenon by making
inferences simultaneously at multiple levels (Kemp et al., 2007):
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At a lower level, learners and the model infer, based on a few
examples, that the count noun “ball” is used to refer to spherical
objects, “cup” is used to refer to all cup-shaped objects, and so
forth. At a higher-level, learners and the model infer that among a
set of potential perceptual dimensions such as shape, size, texture,
and color, shape appears to be the one that applies to all lower-
level categories. Even with little data at the lower level, a second-
order generalization, or overhypothesis, can be inferred across
object categories. This overhypothesis then guides future word
learning of object categories. Empirical studies also suggest that
even infants are capable of forming second-order generalizations
based on limited amounts of data (e.g., Dewar & Xu, 2010).
Overhypothesis formation, as has been argued, provides an impor-
tant tool for young learners to build larger conceptual structures
and intuitive theories (Perfors et al., 2011).

These are just a few examples that demonstrate the utility of
probabilistic Bayesian models in developmental research. Many
domains and many aspects of learning have been investigated
using a combination of behavioral experiments and computational
modeling. This fast-growing body of work shows that these two
types of methods enhance each other: The development of formal
models may provide rational analyses at the computational (and
sometimes algorithmic) level (Anderson, 1990; Griffiths et al.,
2010; Griffiths, Lieder, & Goodman, 2015; Griffiths, Vul, &
Sanborn, 2012; Marr, 1982; Tenenbaum et al., 2011); the models
make empirical predictions that are tested in behavioral experi-
ments, and in turn, the experimental results will inform and refine
the formal models. Adopting this general approach, many labs and
research groups have investigated domains such as physical rea-
soning, word learning, causal induction, social cognition, moral
judgment, property induction, number word acquisition, grammar
learning, attention allocation, pedagogy and selective trust, theory
of mind, among others (e.g., Baker, Saxe, & Tenenbaum, 2009;
Bonawitz, Denison, Gopnik, & Griffiths, 2014; Chater & Oaks-
ford, 2008; Denison, Bonawitz, Gopnik, & Griffiths, 2013; Frank
& Goodman, 2012; Gopnik et al., 2004; Gopnik & Schulz, 2004;
Gopnik & Wellman, 2012; Griffiths et al., 2010; Gweon & Schulz,
2011; Gweon et al.,, 2010; Kemp & Tenenbaum, 2008; Kidd,
Piantadosi, & Aslin, 2012; Kushnir & Gopnik, 2005; Liu, Ullman,
Tenenbaum, & Spelke, 2017; Nichols et al., 2016; Perfors et
al., 2011; Piantadosi, Tenenbaum, & Goodman, 2012; Shafto,
Goodman, & Frank, 2012; Sobel, Tenenbaum, & Gopnik, 2004).

Where do hypotheses come from? It is important to note that
the Bayesian approach is not without critics (see Jones & Love,
2011 and Marcus & Davis, 2013 for a rebuttal). A key open
question that has been raised over and over again, in discussing the
utility of the Bayesian framework for understanding cognition and
development, is where hypotheses come from. Many Bayesian
models assume a fixed, large hypothesis space that learners will
consider, and given data, the learners will simply choose among
this set of hypotheses by computing the posterior probabilities.
This construal may be particularly problematic for those of us
interested in development: It seems extremely implausible that
children work with a fixed hypothesis space, and in fact, much
evidence suggests the contrary (e.g., Siegler, 1996; Klahr, 2000;
Carey, 2009). Perfors et al. (2011) offers one answer to this
challenge. It may be the case that the child has the capacity to
generate an infinite number of hypotheses, given a set of primitives
and a set of procedures for building more complex hypotheses

from these primitives. However, at any given time, this latent
hypothesis space needs to deliver an explicit hypothesis space for
any domain of learning, depending on the child’s level of devel-
opment. Then the computational and empirical question is to figure
out how a learner comes up with an explicit hypothesis space such
that she considers the relevant hypotheses for a particular learning
task. Recent research has begun to address this issue (e.g., Bram-
ley, Rothe, Tenenbaum, Xu, and Gureckis, 2018; Schulz, 2012;
Ullman, Goodman, & Tenenbaum, 2012), employing ideas such as
stochastic search, or a combination of a top-down grammar that is
able to generate many hypotheses and a bottom-up procedure that
takes into account the existing evidence.

There is also a more radical sense of hypothesis generation,
which is critical for genuine conceptual change. Here we are
concerned with the case where new primitives/new concepts may
be added to the hypothesis space. I suggest that constructive
thinking mechanisms may provide the key (see The Child as an
Active Learner section below).

Probabilistic reasoning and other learning mechanisms in
infants. The last section focuses on the idea that the use of
probabilistic models has broadened our investigation of develop-
mental phenomena and deepened our understanding of learning
mechanisms. This set of ideas also dovetailed with, and inspired,
much work on probing infants’ earliest mechanisms of learning.
For example, Saffran et al. (1996) demonstrated for the first time
that 8-month-old infants, in an artificial language learning exper-
iment, were able to track the transition probabilities of adjacent
syllables in order to segment continuous speech into potential
words. Aslin et al. (1998) then reported a critical experiment
showing that it was indeed transition probabilities, not mere fre-
quencies of syllable combinations, that infants kept track of. Sub-
sequent research followed up on this line of inquiry and found that
infants also keep track of transition probabilities of tones and
visual forms (e.g., Kirkham, Slemmer, & Johnson, 2002). Another
line of research using similar methods also showed that not only do
infants track the statistics in a speech stream, they are also able to
extract variables and recognize abstract patterns such as ABA or
AAB from sequences of syllables (Marcus, Vijayan, Bandi Rao, &
Vishton, 1999).

Studies from the last decade zoomed in on whether infants are
capable of rudimentary probabilistic reasoning. Teglas, Bonatti,
and their colleagues have provided compelling evidence that 12-
month-old infants have intuitions about how probable an object
will fall out of a “lottery machine” given some information about
the population (e.g., one yellow and three blue objects bouncing
around). Infants looked reliably longer at a low-probability event
(e.g., the yellow object exiting the machine) than a high-
probability event (e.g., one of the blue objects exiting the machine;
Téglas et al., 2007, 2011). Other studies investigated infants’
probabilistic intuitions with different methods. For example, Deni-
son, Xu, and their colleagues report that 6- and 8-month-old
infants (but not 4-month-olds) look longer at a low-probability
outcome than a high-probability outcome when samples are drawn
randomly from a box of red and white Ping pong balls (Denison,
Reed, & Xu, 2013; Denison, Trikutam, & Xu, 2014; Xu & Garcia,
2008). Furthermore, these computations are strong and robust
enough to support prediction and action—10- to 14-month-old
infants crawl to a cup that is more likely to contain a preferred
object based on probabilities of a random draw (Denison & Xu,
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2010b, 2014; see Denison & Xu, in press, for a review). A number
of studies also demonstrated that these mechanisms are inferential
in the sense that they take into account substantive constraints in
both the physical and psychological worlds, and the infant learners
are sensitive to violations of random sampling in how they make
inferences (e.g., Denison & Xu, 2010a; Kushnir, Xu, & Wellman,
2010; Téglas et al., 2007, 2011; Xu & Denison, 2009; Wellman,
Kushnir, Xu, & Brink, 2016). Lastly, in an elegant recent study,
Cesana-Arlotti et al. (2018) found that in addition to these prob-
abilistic reasoning abilities, 12- to 19-month-old infants’ reasoning
toolbox may also include precursors to deductive reasoning.

This body of research provides compelling evidence that infants
are not only good at keeping track of frequencies and correlations
(i.e., associative learning mechanisms), they also have a set of
sophisticated statistical inferential mechanisms that support induc-
tive learning from at least 6 months onward. These powerful
rational, statistical, and inferential mechanisms allow human in-
fants to acquire knowledge rapidly and accurately across many
domains (see Xu & Kushnir, 2013, 2012 for reviews). Their
existence plays a key part in explaining young children’s rapid
cognitive growth within the first few years of life in the absence of
much formal instruction—a feat that astonishes most adults.

Constructive Thinking as Mechanisms for Genuine
Conceptual Change and Hypothesis Generation

Belief revision is a key part of learning—it happens every day
in all domains of knowledge—and the Bayesian framework pro-
vides a normative standard for rational updates of beliefs. These
beliefs may be at the level of individual facts or at the level of
overhypotheses or intuitive theories. For the most part, the Bayes-
ian inductive learning mechanisms have been applied in situations
in which the learner already has a set of relevant hypotheses in
mind, and in light of evidence, the learner updates the posterior
probabilities of each of the hypotheses. The evidence the learners
use may come from various sources, for example, data generated
by the learner herself, observations, or via testimony. However,
not all learning is belief revision (contra Fodor, 1980). Genuine
conceptual change is both possible and actual (Carey, 1985, 1991,
2009; Gopnik & Meltzoff, 1997; Wellman & Gelman, 1992).

Following Gendler (2000); Lombrozo (2012), and others, here 1
argue that constructive thinking mechanisms (also known as
“learning by thinking”; Lombrozo, 2018) support radical concep-
tual change, because they are hypothesis generation mechanisms
that may deliver something genuinely new. This suite of mecha-
nisms includes analogy, explanation, mental imagery, mental sim-
ulation, and thought experiment. All these mechanisms have been
studied in the history and philosophy of science, and also in
cognitive and developmental psychology. Given the scope of this
paper, I will give just a few examples of these cognitive processes
to illustrate their importance.

Thought Experiments

Thought experiment is often considered the paradigmatic case
of “learning by thinking” in philosophy of science (e.g., Gendler,
1998, 2000). Galileo’s famous thought experiment of dropping
different size objects from the Tower of Pisa gives historians and
philosophers a clear case of how thought experiments may deliver

something genuinely new, and how philosophers and cognitive
scientists may understand how this kind of “discovery” is possible
(see Gendler, 2000, for a detailed analysis). In the cognitive
development literature, an elegant case study on children’s con-
ception of weight, density, size, and material kind shows that
children could also reason through a set of premises and arrive at
the correct logical conclusion even though they may not ever
obtain the relevant empirical observations (Smith et al., 1985).
This case study probes 3- to 9-year-olds’ understanding of how
these concepts about material kind are embedded in a theory-like
structure, and how an undifferentiated concept of weight/density
gets differentiated. During the preschool years, children’s concept
of weight is “felt weight”—if an object is put on your hand and
you can feel its weight, then it is material and has mass. With this
conception of weight, children will often answer that one grain of
rice or a very small piece of Play-Doh or Styrofoam weighs
“nothing at all.” By age 8 or 9, however, children come to realize
that all objects and material kinds, no matter how small, weigh
something. Part of their reasoning is a thought experiment: A child
knows that a pile of grains of rice has weight. If one makes the pile
smaller, the weight will be less. If one makes the pile smaller still,
the weight will be even less. Eventually when there is only one
grain of rice left, the child thinks it weighs nothing. But, when one
puts more and more grains of rice together, the pile will start to
weigh something. How is it possible that if one grain of rice
weighs nothing, but 20 or 100 grains of rice start to weigh
something? By getting herself into a contradiction, the child real-
izes that even though one grain of rice does not feel like it has
weight in her hand, it nevertheless has to weigh a tiny bit. At this
point, the child’s concept of weight has changed from “felt weight”
to a more accurate concept that all material kinds have weight.
This is a thought experiment because the child did not acquire this
piece of knowledge by getting a more sensitive scale to see if one
grain of rice really weighs something. Instead she works through
the logic and draws the correct inference that the concept of weight
is different from the concept of “felt weight,” and as she follows
rational principles of reasoning, she learns that even a tiny piece of
any material kind must weigh something.

Explanation

Many developmental psychologists and cognitive scientists
have argued for a privileged role of explanation in understanding
development (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi,
de Leeuw, Chiu, & LaVancher, 1994; Keil, 2006; Lombrozo,
2006, 2016; Wellman, 2011, among others). Lombrozo and her
colleagues have studied the effects of explanation extensively in
recent years, and they have articulated a set of explanatory virtues
that help us understand why explanation provides constraints on
the reasoning process. For example, one study found that adults are
more likely to find broad patterns in a set of data when asked to
explain than when asked to describe (Williams & Lombrozo,
2012). This tendency is so strong that in a later study, they found
that explaining impaired learning when there were no broad pat-
terns to be found in the data presented to participants (Williams,
Lombrozo, & Rehder, 2013). They dubbed this explanatory virtue
the subsumptive constraint. Similarly, when asked to explain, both
adults and children prefer simpler causes as opposed to more
complex ones (e.g., invoking one cause for two instances as
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opposed to positing a distinct cause for each instance) when asked
to explain than in a control condition (Walker, Bonawitz, &
Lombrozo, 2017). Thus, simplicity is another explanatory virtue.
Lombrozo (2018) has suggested that the epistemic force of expla-
nation as a learning-by-thinking mechanism is that “. . . the process
of engaging in explanation recruits explanatory virtues as evalua-
tive criteria, and these in turn act as constraints on learning and
inference by leading learners to seek and privilege hypotheses that
support these virtues.” It is impressive that even preschoolers
behave in a way that accord with these explanatory virtues, with
little formal instruction as far as we know. Explanation, seen in
this light, provides a source of new hypotheses that do not solely
rely on the data themselves.

Analogy

Analogical reasoning is another extensively discussed mecha-
nism for hypothesis generation and scientific change (Holyoak,
2012). Holyoak and Thagard (1989) suggests that “analogical
inference—using a source analog to form a new conjecture,
whether it be a step toward solving a math problem, a scientific
hypothesis, a diagnosis for puzzling medical symptoms, or a basis
for deciding a legal case—is the fundamental purpose of analog-
ical reasoning” (p. 128). One important procedure for analogical
reasoning is structural mapping (Gentner, 1983) and finding
“alignable differences” (Markman & Gentner, 1993). The idea is
that the learner examines the structure of the source domain, and
for each element, tries to identify the corresponding element in the
target domain. Critically, when there is not a corresponding ele-
ment, postulating one as needed—that is, a new concept or novel
hypothesis.

Recent studies have found that even 3- to 9-month-old infants
have some rudimentary capacity for analogical reasoning. Infants
use the process of comparison to extract nonobvious commonali-
ties across sets of exemplars, for example, same versus different,
and generalize accordingly on test trials (Anderson, Chang, Hes-
pos, & Gentner, 2018). This finding fits nicely with the idea that
infants can extract variables—an impressive ability for abstrac-
tion—while ignoring more obvious and salient perceptual features
(e.g., Marcus et al., 1999). Gentner and Hoyos (2017) further
suggests that analogical reasoning may be the underlying mecha-
nism for overhypothesis formation, which, as suggested in a pre-
vious section, plays a critical role in developing learning biases
and constructing larger conceptual structures.

Preschoolers use the process of comparison to generate new
hypotheses. In an elegant study, Christie and Gentner (2010) found
that structural alignment helps 3- and 4-year-old children to move
away from their default mode of generalizing based on object
similarity to generalizing based on relational similarity.

These and many other studies support the claim that the ability
for analogical reasoning—a mechanism for hypothesis genera-
tion—develops rapidly during the first few years of life, and they
play a crucial role in building intuitive theories of various content
domains.

In sum, constructive thinking (“learning by thinking”; Gendler,
2000; Lombrozo, 2018) allows the learner to construct novel
explanations, imagine alternative scenarios and possible worlds,
and generate analogies across domains. This suite of mechanisms,
generally speaking, enlarge a mind’s conceptual repertoire by

going beyond the data and generating novel ideas and solutions
that may increase the coherence and elegance of a current theory
or overturn it in favor of a new theory.

The Child as an Active Learner

The last tenet of the rational constructivist view grows out of an
old idea in constructivist theories of development (Bruner, 1961;
Piaget, 1954). This is an important part of a theory of cognitive
development because the child faces a world full of information
and potential evidence for belief updating and theory building, and
she needs to have a “theory of evidence” that helps sift through the
enormous amount of information in the environment, both in data
processing and in data generation (Fedyk, Kushnir, & Xu, in
press).

The “child as an active learner” has been an enduring theme in
the study of developmental psychology. The basic intuition is that
children are not just passive recipients of input from the environ-
ment; instead they play an active role in their own development.
Bruner (1961) strongly advocated for an active learning model for
education, based on ideas from developmental psychology. Piaget
(1954) documented in great detail how his own children manipu-
lated objects and he used these observations for developing an
account of how object permanence is acquired through a child’s
active interventions in the world. More recently, several research
groups have resurrected this idea (Gopnik & Bonawitz, 2015;
Gopnik & Wellman, 2012; Kidd & Hayden, 2015; Kidd et al.,
2012; Schulz, 2012; Singer et al., 2006; Xu & Kushnir, 2013,
among others). In particular, Schulz (2012) argued that the way
children acquire knowledge about the world is similar to the
various epistemic practices we observe in scientists, extending the
analogy between learning in childhood and scientific theory build-
ing. This account suggests that like scientists, young children
selectively explore evidence that is confounded and unexpected,
isolate candidate causes in order to decide between hypotheses,
and make rational decisions about when to rely on others’ knowl-
edge.

Recent research on the active child learner has focused on two
issues that are critical for developing accounts of active learning.
One set of studies has focused on infants and children’s attention
allocation, curiosity, interest, and information seeking (Begus,
Gliga, & Southgate, 2014, 2016; Gerken, Balcomb, & Minton,
2011; Goupil, Romand-Monnier, & Kouider, 2016; Gruber,
Gelman, & Ranganath, 2014; Kidd & Hayden, 2015; Kidd et al.,
2012; Stahl & Feigenson, 2015); with preschoolers and older
children, various studies have focused on whether young children
can generate informative data on their own, be it in the form of
causal intervention or question-asking (Bonawitz, van Schijndel,
Friel, & Schulz, 2012; Legare, 2012; Legare, Gelman, & Wellman,
2010; McCormack, Bramley, Frosch, Patrick, & Lagnado, 2016;
Ruggeri, Lombrozo, Griffiths, & Xu, 2016; Sim & Xu, 2017).
Much of the work has also centered on the issue of whether
infants’ and children’s behaviors can be explained by measures of
uncertainty (e.g., Coughlin, Hembacher, Lyons, & Ghetti, 2015;
Vredenburgh & Kushnir, 2016), and whether formal computa-
tional models may help us understand the computational under-
pinnings of these phenomena (e.g., Coenen, Rehder, & Gureckis,
2015; Kidd et al., 2012; McCormack et al., 2016; Meng, Bramley,
& Xu, 2018; Ruggeri et al., 2016, 2017). Some studies have also
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investigated systematically whether active learning is superior to
other forms of learning, in both adults and children (e.g., Markant
& Gureckis, 2014; Markant, Ruggeri, Gureckis, & Xu, 2016;
Ruggeri et al., 2016; Sim & Xu, 2017).

Starting in the second half of the first year, infants are not
simply drawn to salient aspects of their environment; they begin to
allocate their attention differentially depending on whether there
are potential learning opportunities or not. For example, 8-month-
old infants remain attentive when facing a sequence of objects that
is neither too predictable nor too unpredictable, as if to say that
they choose to attend to stimuli that are “just right.” Furthermore,
infants’ looking away behavior (an index of selective attention) is
well captured by a probabilistic Bayesian model, even at the level
of individual infants (Kidd et al., 2012; Piantadosi, Kidd, & Aslin,
2014). In an artificial language learning study, Gerken et al. (2011)
found that 11-month-old infants stop attending to speech streams
that appear to contain nonlearnable rules of natural language. Stahl
and Feigenson (2015) showed that when infants witness an object
violating a physical rule (e.g., that a solid object cannot pass
through another solid object), they pay more attention to the
violation object and manipulate the object to reproduce the sur-
prising effect. Furthermore, these infants learn an arbitrary prop-
erty faster when it is taught on the violation object than a nonvi-
olation object.

With toddlers, Sim and Xu (2017) found that 13-month-olds
choose to crawl toward and play with a box that had yielded a
“suspicious” sequence of seemingly random draws of ping pong
balls. Begus et al. (2014) found that 14-month-olds’ pointing
behavior may be indicative of information seeking—when taught
a new property on the object that they had pointed to, they learned
better than if the property had been taught on an object that they
had not pointed to. Goupil et al. (2016) found that at 20 months,
infants can monitor their own uncertainty about the location of a
hidden object, and seek help from others to improve their chance
of retrieving the object.

With 2- and 3-year-old children, there is some evidence that
they can generate informative data for themselves. In a causal
learning task, Sim and Xu (2017) found that children in a free play
condition (in which they were given the opportunity to figure out
on their own which blocks make the toy machines play music; cf.
Gopnik & Sobel, 2000) did just as well on the test trials as children
in a didactic condition (in which they were shown evidence by an
experimenter which blocks activate the toy machines). Interest-
ingly, this was not the case with 19-month-olds, who needed the
help of the parents and experimenters in the same task. Schulz,
Gopnik, and Glymour (2007) found that preschoolers sometimes
generate effective data to tease apart alternative hypotheses in
causal learning. With preschoolers, there is also some preliminary
evidence that when learning a complex rule, free play may out-
perform didactic demonstrations (Sim, Mahal, & Xu, 2017).

Recent research on active learning in adults has informed a great
deal of developmental research on this topic. Gureckis, Markant,
and their colleagues have used a yoked design to probe whether
active learning really confers a learning advantage (Gureckis &
Markant, 2012; Markant & Gureckis, 2014), and found that adults,
when given the opportunity to test their own hypotheses in an
active learning condition, consistently outperform those in a yoked
passive condition in which the participants received the same data.
Castro, Kalish, and Nowak (2008). Also discovered that adults

perform better in an active learning condition, and their strategy is
closer to the optimal strategy. Similar findings have been obtained
with 7- to 10-year-old children (Ruggeri et al., 2016; Sim, Tanner,
Alpert, & Xu, 2015).

An overall picture has begun to emerge that helps us character-
ize active learning in children. With infants, there is now a wealth
of evidence showing that their attention allocation is based on
some assessment of learning potential, and following infants’
indication of curiosity or interest may enhance learning. With
infants, however, it is unclear if they are able to generate their own
data effectively. With preschoolers, empirical studies have shown,
convincingly, that they are able to generate informative data on
their own, although at the moment it is unclear whether the
self-generation of evidence follows any rational principles (Mc-
Cormack et al., 2016; Meng et al., 2018).

The child-as-an-active-learner claim captures the idea that de-
velopment is an interplay between the child and her environment.
Even as infants, the young learner chooses what to attend to, what
to play with, who to learn from, and where to seek help. As the
learner grows, she also learns to generate her own data, directly (as
in manipulating the physical world) or indirectly (as in seeking
explanations through question asking). In other words, cognitive
agency is an integral part of a theory of development (see Fedyk &
Xu, 2018 for discussion).

Some Corollaries and Implications of the Rational
Constructivist Approach

Why Is Rational Constructivism Not a Piagetian View

Three reasons make the rational constructivist theory a non-
Piagetian view. First, our characterization of the initial state de-
parts radically from Piaget’s as well as other empiricists’ view.
The newborn human infant is not in a “blooming buzzing confu-
sion”—far from it. The newborn infant is highly competent in two
senses: She begins life with a set of proto-conceptual primitives
that remain functional throughout her life, and these primitives are
computationally and inferentially complex; she also begins life
with a set of powerful rational, statistical, and inferential learning
mechanisms that propels development forward rapidly from in-
fancy on. Second, contra to Piagetian stage theory, infants already
have the capability for thinking in symbols (especially as language
learning progresses in a fast pace from birth, or even in vitro) and
forming abstractions (in the form of rudimentary analogical rea-
soning and variable abstraction). Infants’ knowledge about the
world is infinitely richer than what Piaget had posited for the
helpless newborn, and development cannot be divided into stages
that are qualitatively different from each other. Instead, learning
and development are driven by language and symbol learning,
rational relief revision, and constructive thinking for genuine con-
ceptual change. These mechanisms operate in parallel throughout
development. Third, the types of learning mechanisms that we
have discussed here depart radically from the Piagetian idea of
“logical construction”—that the child progresses through a set of
stages with increasing logical capacities (e.g., from not being able
to think about superset/subset relations to having such an ability,
Flavell, 1963). Yet I also hope that it is clear from the preceding
discussion that rational constructivism is a constructivist theory of
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development. The young human learner actively engages in the
learning process from infancy onward, and she constructs new
concepts, new learning biases, new beliefs, and new intuitive
theories that may be radically different from what she is born with.
Furthermore, although infants may start life with rather complex
representations that are domain specific, the learning mechanisms
I have discussed are all domain-general ones. These domain-
general mechanisms drive development by changing the format of
the initial representations that lead to the construction of domain-
specific intuitive theories, by providing a rational way for belief
revision, and by constructing new ideas and new hypotheses to
engender genuine conceptual change.

The Utility of Formal Computational Models in
Understanding Learning and Development

The rational constructivist view is largely inspired by the surge
of research on using probabilistic models (mostly of the Bayesian
variety) in studying human cognition and learning. In the last
decade or so, the Bayesian approach has generated much interest-
ing, important, and groundbreaking computational work (e.g., in
terms of developing mathematical tools to formalize important
insights and phenomena in cognitive science, and developing new
algorithms for understanding process-level mechanisms) and em-
pirical findings (e.g., in terms of understanding the importance of
compositionality and systematicity of thought, semantics, proba-
bilistic reasoning mechanisms, the tradeoff between heuristics and
normative Bayesian reasoning; see Chater & Oaksford, 2008;
Griffiths et al., 2010; Tenenbaum et al., 2011 for reviews). This
has been an incredibly fruitful and productive research enterprise.
A group of developmental psychologists have built long lasting
collaborative partnerships with computational cognitive scientists,
and these collaborations have led to new ways of thinking about
learning and development (e.g., see Xu & Griffiths, 2011; Xu &
Kushnir, 2013, 2012 for reviews). Taking formal modeling seri-
ously has shed new light on fundamental issues such as nature
versus nurture, innate versus learned, and mechanisms of learning
and developmental change.

Here I have emphasized the utility of Bayesian probabilistic
models in understanding cognitive development. But of course a
variety of computational models have been developed over the last
three decades that aim to shed light on developmental processes
(see Marcovitch & Zelazo, 2012). As Schlesinger and McMurray
(2012) put succinctly, the contributions of computational models
are many-fold. Models often make researchers be more explicit
about their theoretical commitments; models help us spell out
causal mechanisms; models—both successful and failed—may
provide constraints on learning; models may help bridge levels of
analysis given the precision of a mathematical language; models
may give us opportunities to study issues that are difficult to
investigate empirically, such as critical period, sensory depriva-
tion, atypical development, and so forth; and lastly, modeling must
go hand in hand with behavioral experimentation because they
naturally inform each other.

Implications for Philosophy of Science and
Epistemology

Over the years, a few researchers have begun to consider the
philosophical implications of thinking about belief revision within

the Bayesian framework, and how the rational constructivist ap-
proach may inform the study of philosophy of science and epis-
temology. For example, Henderson, Goodman, Tenenbaum, and
Woodward (2010) have argued that hierarchical Bayesian models
provide a plausible model for understanding the structure of sci-
entific theories—these theories consist of multiple levels, higher
level theories may guide learning at the lower levels, and theory
change may be captured with these computational tools.

More recently, Fedyk and Xu (2018) attempt to develop an
account of rationality based on the concepts of Bayesian rational-
ity, creative rationality, and cognitive agency. Bayesian rationality
is a well-developed framework for belief revision, normatively and
descriptively. However, to accommodate constructive thinking
mechanisms, creative rationality is needed—young learners are
often in need of generating novel ideas that go beyond the cur-
rently available data, and the balance between this sort of creativity
and everyday belief revision constitutes a form of homeostasis in
development. Lastly, cognitive agency firmly puts the child at the
center of her learning endeavor—Ilearning is an active, agentive,
and social process. Fedyk and Xu (2018) further suggests that this
type of analysis brings the study of epistemology closer to con-
temporary cognitive science, and it follows from Quine’s call for
a “naturalized epistemology” (Quine, 1969).

Future Directions

In conclusion, rational constructivism aims to go beyond the
nativism versus empiricism debate, and beyond traditional Piaget-
ian constructivist theory of development. Here we explicate the
central tenets of this new theoretical framework, in the hopes of
generating new theoretical discussions and new empirical investi-
gations.

Many questions remain open given the proceeding discussion on
rational constructivism. Here I focus on four key issues for future
research. First, if initial representations and later intuitive theories
require distinct representational formats, what are they exactly and
how can we capture the differences in computational terms? This
issue is intimately related to the question of how (and whether)
language transforms initial representations into the format of a
language of thought, such that learners can then formulate intuitive
theories in propositional attitudes (Carey & Spelke, 1996; Gopnik,
1996; Karmiloff-Smith, 1990). Furthermore, is learning a natural
language instrumental for a learner’s thoughts to be compositional,
systematic, and productive in the Fodorian sense (Fodor, 1975)?

Second, on the computational side, modeling efforts have shed
new light and inspired new empirical work across many domains
of cognition and development. But so far most of the models have
focused on the computational level of analysis (Marr, 1982). How
can we go beyond computational level analysis and get down to
the nitty-gritty of developing algorithms that capture real human
behavior (Griffiths, Lieder, & Goodman, 2015)? A systematic
investigation of this issue may also shed light on the nagging
question of how to reconcile the Bayesian learner with one who
falls prey to heuristics and biases. If we are correct in claiming that
infants are intuitive statisticians, do children learn to employ
heuristics and biases over the course of development in order to
rationally budget cognitive resources, as some have argued in
recent years (e.g., Gualtieri & Denison, 2018; Lieder & Griffiths,
2017)?
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Third, what is the tradeoff between employing Bayesian induc-
tive mechanisms and constructive thinking (or “learning by think-
ing”) mechanisms? The former provides a computationally rigor-
ous framework for belief revision, and much learning is about
belief revision, for both adults and children. Yet we also know that
learning and development is not just about belief revision. Intuitive
theories, which constitutes larger conceptual structures, sometimes
undergo radical conceptual change themselves, and sometimes
new domain theories are formed (e.g., intuitive chemistry, Au,
1994; intuitive astronomy, Vosniadou & Brewer, 1994). If a child
is always in a belief revision mode, she can only fine-tune her
existing beliefs since she has a fixed hypothesis space to work
with. How does she generate new ideas and novel hypotheses? One
answer is that “learning by thinking” mechanisms (Gendler, 2000;
Lombrozo, 2018) work together with belief revision mechanisms
to balance when to pursue radical new ideas and when to tweak
existing beliefs. This, at the moment, is a wide open question, and
a real challenge for further theoretical, empirical, and computa-
tional inquiry.

Lastly, what are the limits of the child as an active learner, and
would understanding these limits revise our characterization of
children’s learning? Despite the wide consensus that infants and
young children play an active role in their own development, we
still lack a coherent account of what it means. It appears that the
inquisitive child is curious and exploratory, but she may not be
effective in actually generating her own data. Because a large part
of advancing science—with the ultimate goal of building more and
more accurate causal models of the world—is about generating
informative data by following the scientific method, should we
revisit the idea that the child is a little scientist (e.g., D. Kuhn,
1989)?

These and many other questions are ripe for further theoretical
and empirical investigations, and I have no doubt that the field of
cognitive development will make great strides in answering these
questions in the years to come.
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